|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Экономическая кибернетикаЭкономическая кибернетикаЭк. Кибернетика. Игра – матем. Модель конфликтной ситуации. Стратегия игрока – это правила выбора действий в сложившейся ситуации. Решение игры – это нахождение оптимальной стратегии для каждого игрока, т.е. нахождение цены игры. Оптимальная стратегия игрока – это стратегия, которая в среднем (настрив. на длительную игру) дает игроку возможный наибольший выигрыш. Неонтогонистическая – если выигрыш одной из сторон склад. из проигрыша др. стороны, иначе антогонистическая – выигрыш одного равен проигрышу др. Матричные игры. - самые простые игры. Играют 2 чел. У каж конечное число стратегий. Список стратегий известен каж играющему, т.е. игра с полной инф. Игра одноходовая. Величина выигрыша известна заранее, опис. В числовых единицах. Оба дейст. Сознательны, никто не поддается. Игра яв-ся антогонистической. Правила определяют победителя. Игры с седловой точкой обладают св-м устойчивости – если один игрок примен оптим стратегию, то др. игроку не выгодно отклон-ся от своей оптим стратегии. Первонач сведен по т. вероятности. Случайные событие – это событие, которое может произойти или не произойти в данной ситуации. Вероятность – это количественная характеристика, мера появ-я событий. P(А)=(число благопр. событий)/(общее число событий). М(х)=(i хipi – матем. ожидание. D(x)=(i х2ipi – (M(x))2 – дисперсия. ((x)=(D(x) – средне квадратичное отклонение – показывает степень разбросанности значений случайной величины относительно матем. ожидания. Правило 3 сигм ((): P(M(x)-3((x)0); S*A- оптим стратегия. Стратегия Вj активная второго игрока – если вероятность исполь-я ее в опти стратегии больше нуля (Bi-акт, если q*i>0); S*B - оптим стратегия. Неактивная стратегия – вероятность применения, которой в оптим стратегии равна нулю. Теорема устойчивости: Если один игрок применяет свою оптим стратегию, то 2 игроку не выгодно выходить за рамки своих активных стратегий. Теорема: В матр. игре количество активных стратегий у каж игрока одинаковое. Применение решений в усл. неопределенности. Рассмотрим игру человек и природа. Человек – лицо принимающее решение. Природа – экон-я среда в состоянии рынка. Отличия от матричной игры: Активные решения принимает только чел, он хочет найти наиболее оптим решение. У природы стихийное поведение и она не стремится к выигрышу. Считается, что чел знает список сост природы, но не знает какое из них будет фактическим. В игре с природой чел труднее сделать свой выбор, поэтому сущ несколько подходов нахождения оптимального решения. Подход определяется склонностью чел к риску. Риск – это может быть упущенная выгода или необход понести дополнит произв- е затраты. Элементы матрицы – это ожидание резуль. Деятельности в завис от сост природы. 1) Подход махмах “оптимистический”: В каж точке мы находим макс элемент и после этого находим макс из полученных чисел. (i=maxj aij((=maxi(i=(i0( выб Аi0. Выбираем макс значение. Чел ориентир на самый лучший возмож результат, не обращ внимание на возмож неудачи. 2) Критерий Вальда – критерий пессимизма: Находим в каж строчке миним элемент и выбираем ту стратегию, которая дает макс гарантируемый доход. (i=minj aij((=maxi (i=(i ( выб Аi0. 3)Критерий Гурвица (() – ур пессимизма: Человек выбирает 0(((1. Находим число (i=((i+(1-()(i ((maxi(i=(i0 (выб Аi0. Если (=1 – кр Вальда (пессимизма), если (=0 – кр оптимизма. Конкретная величина ( опред-ся эк- ой ситуацией. 4) Критерий Сэвиджа – кр минимального риска: Состав март риска по формуле rij=(j-аij. (ij=max aij ( rij=(j-aij. R=(rij) –матр риска; ri=maxj rij( mini ri=ri0 ( выб Аi0. Если бы мы знали, то мы бы выбрали наиболее эф-е решение. Для самого эф-го решения: rij=0 (если Пj) ( Аi. Риск = величине упущенной возможности. У каж критерия есть свои особенности применения. Если мы оценив ситуацию по разным критериям, то мы можем принять более обоснован решение. Трудность обоснования яв-ся, что природа не стремится к выигрышу. Принятие решения в усл риска. Рассотрим вариант игры чел и природы в случаи, когда нам известно сост природы. Природа к выигрышу не стремится. Находим стратегию, которая приносит макс средний доход. Средний доход расчитывается по правилу теории вероятности. Величина среднего дохода равна матем ожиданию при этой стратегии. 1) М(Ai)=n(j=1aijpj Находим макс maxi M(Ai) 2) Правило минималь среднего риска. R=(Ai)=n(j=1rijpj. Находим наимень mini R(Ai). Лемма: Указ выше 2 критерия в результате всегда приводят к выбору одной и той же оптим стратегии. Док-во: Найдем миним сред риска mini R(Ai)= mini (jrijpj= mini ((j((j- аij)pj)= mini ((j(j pj-(jаijpj)=((j(j pj – не зависит от переменной i, значит это const С(= mini (С-(jаijpj)( минимум разности соот-ет максимуму вычитаемого. maxi (jаijpj=M(Ai). Номера стратегий, на которых достиг миним среднего риска, равны номерам стратегий обеспеч наиболь средний выигрыш. Бейссовский подход нахождения оптимального решения. Бейсовский подход: Если первонач распредел вероятности мы получ доход (Q(. Если мы можем провести эксперемент дающий новое распред вероятности в завис от первонач (Q(и нового (Q’ , мы делаем свой выбор стратегии. p'((Q’(. Некоторые св-ва матричной игры. Замеч№1 О масштабе игр: Пусть даны 2 игры одинаковой размерности с платежной матрицей р(1) и р(2). При чем при любых i и j выпол (а(2)ij=(a(1)ij+(), некоторые числа ( и (. Тогда: 1) опт стратегии 1 игрока в 1 и 2 игре одинаковые. Опт стратегии 2 игрока одинаковы в обеих играх. 2) Цена второй игры V2=(V1+(. Для некот методов решений все элементы матр должны быть не отрицательными. Заме№2 О доминировании стратегий: Этот прием применяется для умень размерности игры. А: Аi доминирует над Ак (Аi>Ак), если для любого j выпол нерав-во аij>akj и хотя бы одно из этих нерав-в строгое. Ак – заведомо невыгодна; сред размер выигрыша меньше; р*к=0, стратегия пассивная. В: Вj доминирует над Вt (Вj>Вt), если для любого i выпол нерав-во аij>ait и хотя бы одно из этих нерав-в строгое. Bt – невыгодна ( q*t=0 – актив стратегия. Доминир стратегии вычеркиваются и получ матр меньшей размерностью. Замеч№3 Сравнение операций по методу Парето: Допустим есть операции Q1, Q2,… Qn. Для каж опер-и расчит 2 параметра: 1) E(Q) – эффективность (доход); 2) r(Q) – степень риска ((-сред квадратич отклон). Самая лучшая операция – это опер с наилуч эф-ю и с наимень риском. F(Q)=(E(Q)-r(Q), где ( - это склонность к риску (не мат проблема). Находим макс из этих критериев maxi F(Qi). Операция Qi>Q, если эф-ть не менее E(Qi)(E(Qj), а риск опер r(Qi)(r(Qj) и хотя бы одно из нерав-в строгое. Доминир страт отбрас, как заведомо невыгодные. Множ Парето – это все недоминир-е операции. Наиболее эф-е среди них. Понятие о позиционных игр. У каж игрока своя платежная матрица. Выигрыш одного не означ проигр др. Таким способом можно высчитывать взаимные интересы игроков, а также возможность образования коалиции. Можно расчит динамические игры учитывая фактор времени и т.д. Позиционные игры –возникает в случаи, когда надо принимать последо-но несколько решений, при чем выбор решения опираются на предыдущ-е решения. Рассотрим простейш случ позиц-й игры с природой. Решение изобр в виде дерева решений. Дерево решений – граф-е изобр-е всех возможных альтернатив игрока и сост природы с указ вероятности соответ-х состояний и размеров выигрыша в каж ситуации. Альтернатива игрока изобр квадратом – список возможных стратегий в соот-й ситуации. Сост-е природы кружочком, чел на них влиять не может. Делается оценка каж вершины и наход макс оценка ситуаций соот-х каж ветви дерева решений. EMV – денежное решение; EMV=(i(отдача в i-ом сост-и)pi maxвершина (EMV)=? |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |