|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Модель прогнозирования параметров финансовых рынков и оптимального управления инвестиционными портфелямиМодель прогнозирования параметров финансовых рынков и оптимального управления инвестиционными портфелямиМИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МОДЕЛЬ ПРОГНОЗИРОВАНИЯ ПАРАМЕТРОВ ФИНАНСОВЫХ РЫНКОВ И ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ИНВЕСТИЦИОННЫМ ПОРТФЕЛЕМ. Выполнил: Проверил: г.Пермь 2000. Построение математической модели прогнозирования поведения является трудной задачей в связи с сильным влиянием политических и других проблем (выборы, природные катаклизмы, спекуляции крупных участников рынка…). В основе модели лежит анализ некоторых критериев с последующим выводом о поведении доходности и ценовых показателей. В набор критериев входят различные макро- и микроэкономические показатели, информация с торговых площадок, экспертные оценки специалистов. Процедура прогнозирования состоит из этапов: 1. Подготовка и предварительная фильтрация данных; 2. Аппроксимация искомой зависимости линейной функцией; 3. Моделирование погрешности с помощью линейной сети. Но для повышения точности модели практикуется нелинейный анализ с использованием многослойной однородной нейронной сети. Этапы проведения нелинейного анализа в системе совпадают со стандартными шагами при работе с нейросетями. 1-й этап. Подготовка выходных данных. Выходными данными являются zi = yi-pi, где yi - реальное значение прогнозируемой величины на некоторую дату, pi - рассчитанное на эту дату с помощью линейного анализа. 2-й этап. Нормирование входных сигналов. [pic] (1) где xij - j-я координата некоторого критерия Xi, M[Xi] - выборочная оценка среднего квадратичного отклонения. 3-й этап. Выбор функции активации и архитектуры нейронной сети. Используются функции активации стандартного вида (сигмоидная, ступенчатая), а также следующего вида: [pic] (2) [pic] (3) [pic] (4) [pic] (5) Архитектура нейронной сети представлена на рисунке: вектор входных сигналов вектор выходн. Вектор сигналов входных сигналов Введены следующие обозначения: (j - линейные сумматоры; fj - нелинейные функции; используемые для аппроксимации; ( - итоговый сумматор. 4-й этап. Выбор алгоритма обучения нейронной сети, основанного на одном из следующих методов: обратного распространения ошибки, градиентного спуска, метода сопряженных градиентов, методе Ньютона, квазиньютоновском. Методы оцениваются по времени, затрачиваемому на обучение и по величине погрешности. 5-й этап. Итоговые вычисления границ прогнозируемого значения: P=Pлин+Рнелин(Енелин где Р — итоговое прогнозируемое значение, Рлин и Рнелин значение линейного и нелинейного анализов. Енелин — погрешность полученная на этапе нелинейного анализа. Результаты задачи прогнозирования используются в построенной на ее основе задаче оптимального управления инвестиционным портфелем. В основе разработанной задачи управления идея минимизации трансакционных издержек по переводу портфеля в класс оптимальных. Используемый поход основан на предположениях, что эффективность инвестирования в некий набор активов является реализацией многомерной случайной величины, математическое ожидание которой характеризует доходность (m={mi}i=1..n, где mi=M[Ri], i=1..n), матрица ковариаций — риск (V=(Vij), i,j=1..n, где Vij=M[(Ri-mi)(Rj-mj)],i,j=1..n). Описанные параметры (m,V) представляют собой оценку рынка и являются либо прогнозируемой величиной, либо задаются экспертно. Каждому вектору Х, описывающему относительное распределение средств в портфеле, можно поставить в соответствие пару оценок: mx=(m,x), Vx=(Vx,x). Величина mx представляет собой средневзвешенную доходность портфеля, распределение средств в котором описывается вектором Х величина Vх (вариация портфеля [3,5]) является количественной характеристикой риска портфеля х. Введем в рассмотрение оператор Q, действующий из пространства Rn в пространство R2 (критериальная плоскость [3]), который ставит в соответствие вектору х пару чисел (mx, Vx): Q: Rn-R2 ( (x(Rn, x(((m,x),(Vx,x)). (7) В задаче управления допустимыми считаются только стандартные портфели, т.е. так называемые портфели без коротких позиций. Правда это накладывает на вектор х два ограничения: нормирующее условие (е,х)=1, где е – единичный вектор размерности n, и условие неотрицательности доли в портфеле, х>=0. Точки удовлетворяющие этим условиям образуют dв пространствеRn так называемый стандартный (n-1)-мерный симплекс. Обозначим его (. (={x(Rn((e,x)=1, x(0} Образом симплекса в критериальной плоскости будет являться замкнутое ограниченное множество оценок допустимых портфелей. Нижняя граница этого множества представляет собой выпуклую вниз кривую, которая характеризует Парето – эффективный с точки зрения критериев выбор инвестора (эффективная граница [3], [5]). Прообразом эффективной границы в пространстве Rn будет эффективное множество портфелей [5]. Обозначим его как (. Данное множество является выпуклым: линейная комбинация эффективных портфелей также представляет собой эффективный портфель [3]. Пусть в некоторый момент времени у нас имеется портфель, распределение средств в котором описывается вектором х. Тогда задачу управления можно сформулировать в следующем виде: найти такой элемент y, принадлежащий (, что ((y,x). Иными словами, для заданной точки х требуется найти ближайший элемент y, принадлежащий множеству (. В пространстве Rn справедлива теорема, доказывающая существование и единственность элемента наилучшего приближения х элементами множества ([6]. Метрика (понятие расстояния) может быть введена следующим образом: ((x,y)=((i=1,nsup(yi-xi,0)+((i=1..nsup(xi-yi,0), (9) где (>0 — относительная величина издержек при покупке, (>0 — относительная величина издержек при продаже актива. Литература 1. Сборник статей к 30-ти летию кафедры ЭК. ПГУ. 2. Ивлиев СВ Модель прогнозирования рынка ценных бумаг. 6-я Всероссийская студенческая конференция «Актуальные проблемы экономики России»: Сб.тез.докл. Воронеж, 2000. 3. Ивлиев СВ Модель оптимального управления портфелем ценных бумаг. Там же. ----------------------- (1 (m f1 f1 ( |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |