|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Построение экономической модели с использованием симплекс-методаПостроение экономической модели с использованием симплекс-методаКурсовая работа Тема: Построение экономической модели с использованием симплекс-метода . Работу выполнил студент УТФ-4-2 Кулаков О. А. Оглавление . Введение Моделирование как метод научного познания. Введение в симплекс-метод Словесное описание Математическое описание Ограничения Переменные Целевая функция Симплекс-метод . Представление пространства решений стандартной задачи линейного программирования Вычислительные процедуры симплекс-метода Анализ результатов . Оптимальное решение Статус ресурсов Ценность ресурса Максимальное изменение запаса ресурса Максимальное изменение коэффициентов удельной прибыли ( стоимости ) Моделирование как метод научного познания. Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний : техническое конструирование , строительство и архитектуру , астрономию , физику , химию , биологию и , наконец , общественные науки . Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в . Однако методология моделирования долгое время развивалась независимо отдельными науками . Отсутствовала единая система понятий, единая терминология . Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания . Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений . Рассмотрим только такие "модели", которые являются инструментами получения знаний . Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале . Под моделирование понимается процесс построения , изучения и применения моделей . Оно тесно связано с такими категориями , как абстракция , аналогия , гипотеза и др . Процесс моделирования обязательно включает и построение абстракций , и умозаключения по аналогии, и конструирование научных гипотез. Главная особенность моделирования в том , что это метод опосредованного познания с помощью объектов-заместителей . Модель выступает как своеобразный инструмент познания , который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект . Именно эта особенность метода моделирования определяет специфические формы использования абстракций , аналогий , гипотез , других категорий и методов познания . Необходимость использования метода моделирования определяется тем, что многие объекты ( или проблемы , относящиеся к этим объектам ) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств. Моделирование - циклический процесс . Это означает , что за первым четырехэтапным циклом может последовать второй , третий и т.д. При этом знания об исследуемом объекте расширяются и точняются, а исходная модель постепенно совершенствуется . Недостатки , обнаруженные после первого цикла моделирования , бусловленные малым знанием объекта и ошибками в построении модели , можно исправить в последующих циклах . В методологии моделирования , таким образом , заложены большие возможности саморазвития . Словесное описание Фирма , производящая некоторую продукцию осуществляет её рекламу двумя способами через радиосеть и через телевидение . Стоимость рекламы на радио обходится фирме в 5 $ , а стоимость телерекламы - в 100$ за минуту . Фирма готова тратить на рекламу по 1000 $ в месяц . Так же известно , что фирма готова рекламировать свою продукцию по радио по крайней мере в 2 раза чаще , чем по телевидению . Опыт предыдущих лет показал , что телереклама приносит в 25 раз больший сбыт продукции нежели радиореклама . Задача заключается в правильном распределении финансовых средств фирмы . Математическое описание . X1 - время потраченное на радиорекламу . X2 - время потраченное на телерекламу . Z - искомая целевая функция , оражающая максимальный сбыт от 2-ух видов рекламы . X1=>0 , X2=>0 , Z=>0 ; Max Z = X1 + 25X2 ; 5X1 + 100X2 0 Использование графического способа удобно только при решении задач ЛП с двумя переменными . При большем числе переменных необходимо применение алгебраического аппарата . В данной главе рассматривается общий метод решения задач ЛП , называемый симплекс-методом . Информация , которую можно получить с помощью симплекс-метода , не ограничивается лишь оптимальными значениями переменных . Симплекс-метод фактически позволяет дать экономическую интерепритацию полученного решения и провести анализ модели на чувствительность . Процесс решения задачи линейного программирования носит итерационный характер : однотипные вычислительные процедуры в определенной последовательности повторяются до тех пор , пока не будет получено оптимальное решение . Процедуры , реализуемые в рамках симплекс-метода , требуют применения вычислительных машин - мощного средства решения задач линейного программирования . Симлекс-метод - это характерный пример итерационных вычислений , используемых при решении большинства оптимизационных задач . В данной главе рассматриваются итерационные процедуры такого рода , обеспечивающие решение задач с помощью моделей исследования операций . В гл 2 было показано , что правая и левая части ограничений линейной модели могут быть связаны знаками . Кроме того , переменные , фигурирующие в задачах ЛП , могут быть неотрицательными или не иметь ограничения в знаке . Для построения общего метода решения задач ЛП соответствующие модели должны быть представлены в некоторой форме , которую назовем стандатрной формой линейных оптимизационных моделей . При стандартной форме линейной модели 1. Все ограничения записываются в виде равенств с неотрицательной правой частью ; 2. Значения всех переменных модели неотрицательны ; 3. Целевая функция подлежит максимизации или минимизации . Покажем , каким образом любую линейную модель можно привести к стандартной . Ограничения 1. Исходное ограничение , записанное в виде неравенства типа ) , можно представить в виде равенства , прибавляя остаточную переменную к левой части ограничения ( вычитая избыточную переменную из левой части ) . Например , в левую часть исходного ограничения 5X1 + 100X2 0 , в результате чего исходное неравенство обращается в равенство 5X1 + 100X2 + S1 = 1000 , S1 => 0 Если исходное ограничение определяет расход некоторого ресурса , переменную S1 следует интерпретировать как остаток , или неиспользованную часть , данного ресурса . Рассмотрим исходное ограничение другого типа : X1 - 2X2 => 0 Так как левая часть этого ограничения не может быть меньше правой , для обращения исходного неравенства в равенство вычтем из его левой части избыточную переменную S2 > 0 . В результате получим X1 - 2X2 - S2 = 0 , S2 => 0 2. Правую часть равенства всегда можно сделать неотрицательной , умножая оби части на -1 . Например равенство X1 - 2X2 - S2 = 0 эквивалентно равенству - X1 + 2X2 + S2 = 0 3. Знак неравенства изменяется на противоположный при умножении обеих частей на -1 . Например можно вместо 2 < 4 записать - 2 > - 4 , неравенство X1 - 2X2 0 Переменные Любую переменную Yi , не имеющую ограничение в знаке , можно представить как разность двух неотрицательных переменных : Yi=Yi’-Yi’’, где Yi’,Yi’’=>0. Такую подстановку следует использовать во всех ограничениях , которые содержат исходную переменную Yi , а также в выражении для целевой функции . Обычно находят решение задачи ЛП , в котором фигурируют переменные Yi’ и Yi’’ , а затем с помощью обратной подстановки определяют величину Yi . Важная особенность переменных Yi’ и Yi’’ состоит в том , что при любом допустимом решении только одна из этих переменных может принимать положительное значение , т.е. если Yi’>0 , то Yi’’=0, и наоборот . Это позволяет рассматривать Yi’ как остаточную переменную , а Yi’’ - как избыточную переменную , причем лишь одна из этих переменных может принимать положительное значение . Указанная закономерность широко используется в целевом программировании и фактически является предпосылкой для использования соответсвующих преобразований в задаче 2.30 Целевая функция Целевая функция линейной оптимизационной модели , представлена в стандартной форме , может подлежать как максимизации , так и минимизации . В некоторых случаях оказывается полезным изменить исходную целевую функцию . Максимизация некоторой функции эквивалентна минимизации той же функции , взятой с противоположным знаком , и наоборот . Например максимизация функции Z = X1 + 25X2 эквивалентна минимизации функции ( -Z ) = -X1 - 25X2 Эквивалентность означает , что при одной и той же совокупности ограничений оптимальные значения X1 , X2 , в обоих случаях будут одинаковы . Отличие заключается только в том , что при одинаковых числовых значениях целевых функций их знаки будут противоположны . Симплекс-метод . В вычислительной схеме симплекс-метода реализуется упорядоченный процесс , при котором , начиная с некоторой исходной допустимой угловой точки ( обычно начало координат ) , осуществляются последовательные переходы от одной допустимой экстремальной точки к другой до тех пор , пока не будет найдена точка , соответствующая оптимальному решению . Общую идею симплекс-метода можно проиллюстрировать на примере модели , посроенной для нашей задачи . Пространство решений этой задачи представим на рис. 1 . Исходной точкой алгоритма является начало координат ( точка А на рис. 1 ) . Решение , соответствующее этой точке , обычно называют начальным решением . От исходной точки осуществляется переход к некоторой смежной угловой точке . Выбор каждой последующей экстремальной точки при использовании симплекс-метода определяется следующими двумя правилами . 1. Каждая последующая угловая точка должна быть смежной с предыдущей . Этот переход осуществляется по границам ( ребрам ) пространства решений . 2. Обратный переход к предшествующей экстремальной точке не может производиться . Таким образом , отыскание оптимального решения начинается с некоторой допустимой угловой точки , и все переходы осуществляются только к смежным точкам , причем перед новым переходом каждая из полученных точек проверяется на оптимальность . Определим пространство решений и угловые точки агебраически . Требуемые соотнощшения устанавливаются из указанного в таблице соответствия геометрических и алгебраических определений . |Геометрическое |Алгебраическое | |определение |определение | | |( симплекс метод ) | |Пространство решений |Ограничения модели | | |стандартной формы | |Угловые точки |Базисное решение задачи в| | |стандартной форме | Представление пространства решений стандартной задачи линейного программирования . Линейная модель , построенная для нашей задачи и приведенная к стандартной форме , имеет следующий вид : Максимизировать Z = X1 + 25X2 + 0S1 + 0S2 При ограничениях 5X1 + 100X2 + S1 = 1000 - X1 + 2X2 + S2 = 0 X1=>0 , X2=>0 , S1=>0 , S2=>0 Каждую точку пространства решений данной задачи , представленную на рис.1 , можно определить с помощью переменных X1 , X2 , S1 и S2 , фигурирующими в модели стандартной формы. При S1 = 0 и S2 = 0 ограничения модели эквивалентны равенствам , которые представляются соответствующими ребрами пространства решений . Увеличение переменных S1 и S2 будет соответствовать смещению допустимых точек с границ пространства решений в его внутреннюю область. Переменные X1 , X2 , S1 и S2 , ассоциированные с экстремальными точками А , В , и С можно упорядочить , исходя из того , какое значение ( нулевое или ненулевое ) имеет данная переменная в экстремальной точке . |Экстремальная |Нулевые переменные|Ненулевые переменные| |точка | | | |А |S2 , X2 |S1 , X1 | |В |S1 , X2 |S2 , X1 | |С |S1 , S2 |X1 , X2 | Анализируя таблицу , легко заметить две закономерности: 1. Стандартная модель содержит два уравнения и четыре неизвестных , поэтому в каждой из экстремальных точек две ( = 4 - 2 ) переменные должны иметь нулевые значения . 2. Смежные экстремальные точки отличаются только одной пе- ременной в каждой группе ( нулевых и ненулевых переменных ) , Первая закономерность свидетельствует о возможности опре- деления экстремальных точек алгебраическим способом путем при- равнивания нулю такого количества переменных , которое равно разности между количеством неизвестных и числом уравнений . В этом состоит сущность свойства однозначности экстремальных точек . На рис. 1 каждой неэкстремальной точке соответствует не более одной нулевой переменной . Так , любая точка внутренней области пространства решений вообще не имеет ни одной нулевой переменной, а любая неэкстремальная точка , лежащая на границе , всегда имеет лишь одну нулевую переменную . Свойство однозначности экстремальных точек позволяет опре- делить их алгебраическим методом. Будем считать , что линейная модель стандартной формы содержит т уравнений и п ( т не могут рассматриваться как ограничения на ресурсы . Скорее , ограничения такого типа отра- жают то обстоятельство , что решение должно удовлетворять опре- деленным требованиям , например обеспечению минимального спро- са или минимальных отклонений от установленных структурных характеристик производства ( сбыта ) . В модели , построенной для нашей задачи , фигурирует ограничение со знаком 0 ) , однако , чтобы получить результат в общем виде , рассмотрим оба случая . Как изменится симплекс-таблица при изменении величины за- паса ресурса на D1 ? Проще всего получить ответ на этот вопрос . если ввести D1 в правую часть первого ограничения начальной сим- плекс-таблицы и затем выполнить все алгебраические преобразова- ния , соответствующие последовательности итераций . Поскольку правые части ограничений никогда не используются в качестве ведущих элементов , то очевидно , что на каждой итерации D1 будет оказывать влияние только на правые части ограничений . |Уравнение |Значения элементов правой части на | | |соответствующих итерациях | | |( начало вычислений|1 |2 ( оптимум| | |) | |) | |Z |0 |0 |2455/11 | |1 |1000 |1000 + |1000/55 + | | | |D1 |D1 | |2 |0 |0 |91/11 | Фактически вce изменения правых частей ограничений , обуслов- ленные введением D1 , можно определить непосредственно по данным , содержащимся в симплекс-таблицах . Прежде всего заметим , что на каждой итерации новая правая часть каждого ограничения пред- ставляет собой сумму двух величин: 1) постоянной и 2) члена , ли- нейно зависящего от D1 . Постоянные соответствуют числам , которые фигурируют на соответствующих итерациях в правых частях ограничений симплекс-таблиц до введения D1 . Коэффициенты при D1 во вторых слагаемых равны коэффициентам при S1 на той же итерации . Так , например , на последнеи итерации ( оптимальное решение ) постоянные ( 2455/11 ; 1000/55 ; 91/11 ) представляют собои числа , фигурирующие в правых частях ограничении оптимальной симплекс-таблицы до введения D1. Коэффициенты ( 27/110 ; 1/55 ; 1/110 ) равны коэффициентам при S1 в той же симплекс- таблице потому , что эта переменная связана только с первым ограничением . Другими словами , при анализе влияния изменений в правой части второго ограничения нужно пользоваться коэффициентами при переменной S2 . Какие выводы можно сделать из полученных результатов? Так как введение D1 сказывается лишь на правой части симплекс- таблицы , изменение запаса ресурса может повлиять только на допустимость решения . Поэтому D1 не может принимать значений , при которых какая-либо из ( базисных ) переменных становится отри- цательной . Из этого следует , что величина D1 должна быть огра- ничена таким интервалом значений , при которых выполняется ус- ловие неотрицательности правых частей ограничений в результи- рующей симплекс-таблице , т . е . X1 = 1000/55 + ( 1/55 )D1 => 0 ( 1 ) X2 = 91/11 + ( 1/110 )D1 => 0 ( 2 ) Для определения допустимого интервала изменения D1 рассмо- трим два случая . Случай 1: D1 => 0 Очевидно , что оба неравнества при этом условии всегда будут неотрицательными . Случай 2: D1 < 0 . Решаем неравенства : ( 1 ) ( 1/55 )D1 => - 1000/55 . Из этого следует , что D1 => - 1000 ( 2 ) ( 1/110 )D1 => - 91/11 . Из этого следует , что D1 => - 1000 Объединяя результаты , полученные для обоих случаев , можно сделать вывод , что при - 1000 0 Решаем неравенства : ( 1 ) ( 50/55 )D2 - 1000/55 . Из этого следует , что D2 - 91/11 . Из этого следует , что D2 => - 200 Объединяя 2 уравнения для Случая 2 мы получим интервал для D2 . D2 О [ - 200 ; 0 ] Объединяя 2 случая мы получим интервал [ - 200 ; 20 ] Максимальное изменение коэффициентов удельной прибыли ( стоимости ) Наряду с определением допустимых изменений запасов ресур- сов представляет интерес и установление интервала допустимых изменений коэффициентов удельной прибыли ( или стоимости ) . Следует отметить , что уравнение целевой функции никогда не используется в качестве ведущего уравнения . Поэтому лю- бые изменения коэффициентов целевой функции окажут влияние только на Z-уравнение результирующей симплекс-таблицы . Это означает , что такие изменения могут сделать полученное решение неоптимальным . Наша цель заключается в том , чтобы найти интер- валы значений изменений коэффициентов целевой функции ( рас- сматривая каждый из коэффициентов отдельно ) , при которых оп- тимальные значения переменных остаются неизменными . Чтобы показать, как выполняются соответствующие вычисле- ния , положим , что удельный объем сбыта , ассоциированной с переменной X1 изменяется от 1 до 1 + d1 где d1 может быть как положительным , так и отрицательным числом . Целевая функция в этом случае принимает следующий вид: Z = ( 1 + d1 )X1 + 25X2 Если воспользоваться данными начальной симплекс-таблицы и выполнить все вычисления , необходимые для ( получения заключн- тельной симплекс-таблицы , то последнее Z-уравнение будет выгля- деть следующим образом: |Базисные |X1 |X2 |S1 |S2 |Решение | |переменные | | | | | | |Z |0 |0 |27/110+1/55|5/22-50/55|2455/11+1000/5| | | | |d1 |d1 |5d1 | Коэффициенты при базисных переменных X1 , X2 и остаточных я равными нулю . Это уравнение отличается от Z-уравнения до введения d1 , только наличием членов , содержащих d1 . Коэффициенты при d1 равны кoэффициентам при соответствующих переменных в Z-уравнении симплекс-таблицы для полученного ранее оптимального решения |Базисные |X1 |X2 |S1 |S2 |Решение | |переменные | | | | | | |X1 |1 |0 |1/55 |-50/55 |1000/55 | Мы рассматриваем X1 - уравнение , так как коэффициент именно при этон переменной в выражении для целевои функции изменился на d1 . Оптимальные значения переменных будут оставаться неизмен- ными при значениях d1 , удовлетворяющих условию неотрицатель- ности ( задача на отыскание максимума ) всех коэффициентов при не- базисных переменных в Z-уравнении . Таким образом , должны выполняться следующие неравенства : 27/110 + 1/55d1 => 0 5/22 - 50/55d1 => 0 Из первого неравенства получаем , что d1 => - 13,5 , а из второго следует что d1 <= 1/4 . Эти результаты определяют пределы изменения коэффициента C1 в виде следующего соотношения : - 13,5 <= d1 <= 1/4 . Та- ким образом , при уменьшении коэффициента целевой функции при переменной X1 до значения , равного 1 + ( - 13,5 ) = - 12,5 или при его увеличении до 1 + 13,5 = 14,5 оптимальные значения переменных остаются неизменными . Однако оптимальное значение Z будет изменяться ( в соответствии с выражением 2455/11 + 1000/55d1 , где - 13,5 <= d1 <= 1/4 X2 изменяется от 25 до 25 + d2 где d2 может быть как положительным , так и отрицательным числом . Целевая функция в этом случае принимает следующий вид: Z = ( 25 + d2 )X2 + X1 Все предыдущее обсуждение касалось исследования изменения коэффициента при переменной , которой поставлено в соответствие ограничение , фигурирующее в симплекс-таблице . Однако такое ограничение имеется лишь в том случае , когда данная переменная является базисной ( например X1 и X2 ) . Если переменная небазисная , то в столбце , содержащем базисные переменные , она не будет представлена . Любое изменение коэффициента целевой функции при небазисной переменной приводит лишь к тому , что в заключительной симплкс-таблице изменяется только этот коэффициент . Рассмотрим в качестве иллюстрации случай , когда коэффициент при переменной S1 ( первой остаточной переменной ) изменяется от 0 до d3 . Выполнение преобразований , необходимых для получения заключительной симплекс таблицы , приводит к следующему результирующему Z-уравнению : |Базисные |X1 |X2 |S1 |S2 |Решение | |переменные | | | | | | |Z |0 |0 |27/110+1/55|5/22|2455/11 | | | | |d1 | | | |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |