рефераты рефераты
Домой
Домой
рефераты
Поиск
рефераты
Войти
рефераты
Контакты
рефераты Добавить в избранное
рефераты Сделать стартовой
рефераты рефераты рефераты рефераты
рефераты
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты
 
МЕНЮ
рефераты Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра... рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

Министерство сельского хозяйства и продовольствия Республики Беларусь

 

БЕЛОРУССКИЙ АГРАРНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

 

 

 

 

Кафедра информационных процессов и технологий

 

 

 

Курсовая работа

На тему: "Определение стратегии руководства перерабатывающего   предприятия по сезонному набору силы с учетом различного объема перерабатывающего сырья.”

 Курсовая работа  №4 Вариант №3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МИНСК 2000

 

CОДЕРЖАНИЕ

 

1.Постановка задачи-----------------------------------------------3стр.

2.Игровая схема задачи-------------------------------------------4стр.

3.Платежная матрица задачи------------------------------------4стр.

4.Решение в чистых стратегиях---------------------------------4стр.

5.Расчет оптимальной стратегии по критериям:

    а) Байеса------------------------------------------------------------5стр.

    б) Лапласа----------------------------------------------------------5стр.

    в) Вальда------------------------------------------------------------5стр.

    г) Сэвиджа----------------------------------------------------------6стр.

    д) Гурвица----------------------------------------------------------6стр.

6.Задача линейного программирования-------------------------6стр.

7.Программа (листинг)----------------------------------------------8стр.

8.Решение задачи, выданное программой----------------------10стр.

9.Вывод----------------------------------------------------------------10стр.

 

 


1. ПОСТАНОВКА ЗАДАЧИ.

Определение стратегии руководства перерабатывающего   предприятия по сезонному набору силы с учетом различного объема перерабатывающего сырья.

 

Консервный завод производит дополнительный набор рабочей силы осенью в период интенсивной переработки продукции (сырья). Потребность в рабочих определяется уровнем производства с.х. продукции (сырья) и состав­ляет  Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...,  человек Расходы на зарплату одного человека  Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра..., а расходы в сезон составляют  Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...,  Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра.... Уволить невостребованный рабочих можно, вы­платив им 30% средств, положенных им по контракту.

A1=20    B1=40   q1=0,1

A2=21    B2=46   q2=0,25

A3=22    B3=50   q3=0,15

           A4=23    B4=54   q4=0,25

A5=27    B5=56   q5=0,15

A6=28    B6=60   q6=0,1

d=36     a=0,7

Требуется:

1) придать описанной ситуации игровую схему, установить характер игры и выявить ее участников, указать возможные стратегии сторон;

2) вычислить элементы платежной матрицы;

3) для игры с полученной платежной матрицей найти решение в чистых стратегиях (если оно существует), вычислив нижнюю и верхнюю чистую цену игры, в случае отсутствия седлового эле­мента определяется интервал изменения цены игры;

4) дать обоснованные рекомендации по стратегии найма рабочей силы, чтобы минимизировать расходы при предложениях:

а) статистические данные прошлых лет показывают, что вероятности  Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...,  уровней производства с.х. продукции известны;

б) достоверный прогноз об урожае отсутствует;

В пункте 4 необходимо найти оптимальные чистые стратегии, пользуясь в 4 а) критерием Байеса, в пункте 4 б) критериями Лапласа. Вальда, Сэвиджа, Гурвица.

5) для игры с данной платежной матрицей составить эквивалентную ей задачу линейного программирования и двойственную ей зада­чу, решить на ПЭВМ одну из задач и выполнить экономический анализ полученного оптимального плана (решения в смешанных стратегиях);

6) составить программу для нахождения оптимальной стратегии игры с произвольной платежной матрицей, используя один из критериев;

           7) по составленной программе вычислить оптимальную стратегию для решаемой задачи.

 

 2.Игровая схема задачи

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...
Это статистическая игра. Один игрок-Директор завода  (статистик), второй игрок-природа. Природа располагает стратегиями Пj (j=1,6), какой будет урожай. Директор может использовать стратегии Аi (i=1,6), сколько рабочих нанять.

 

3.Платежная матрица игры.

 

Платежная матрица игры имеет вид:

 

Природа

1

2

3

4

5

6

Директор

1

-720

-766

-820

-882

-1112

-1200

2

-730,8

-756

-806

-864

-1092

-1176

3

-741,6

-766,8

-792

-846

-1072

-1152

4

-752,4

-777,6

-802,8

-828

-1052

-1128

5

-795,6

-820,8

-846

-871,2

-972

-1032

6

-806,4

-831,6

-856,8

-882

-982,8

-1008

 

Элементы матрицы рассчитываются по формуле:

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

Например:

  a2,3=-(36*21+(22-21)*50)=-806

  a2,1=-(36*21-(21-20)*36*0,7)=-730,8

4.Решение в чистых стратегиях.

  Вычисляем мин. выигрыш Директора, какую бы стратегию не применила природа, и макс. проигрыш природы, какую бы стратегию не применил Директор. В этом случае наша матрица примет вид:

 

Природа

1

2

3

4

5

6

Мин выигрыш Директора

Директор

1

-720

-766

-820

-882

-1112

-1200

-1200

2

-730,8

-756

-806

-864

-1092

-1176

-1176

3

-741,6

-766,8

-792

-846

-1072

-1152

-1152

4

-752,4

-777,6

-802,8

-828

-1052

-1128

-1128

5

-795,6

-820,8

-846

-871,2

-972

-1032

-1032

6

-806,4

-831,6

-856,8

-882

-982,8

-1008

-1008

Макс проигрыш Природы

-720

-756

-792

-828

-972

-1008

 

 

 

Нижняя чистая цена игры=-1008

Верхняя чистая цена игры=-1008

Седловая точка=-1008

Стратегия A6 оптимальна для Директора, стратегия П6 —для природы.

 

5.Расчет оптимальной стратегии по критериям:

 

 а) Байеса

статистические  данные  показывают, что вероятности различных состояний погоды составляют соответственно qi=1,6;

qi

ai

0.1

-893,8

0.25

-880,38

0.15

-872,16

0.25

-867,66

0.15

-878,46

0.1

-885,78

Критерий Байеса

-867,66


По критерию Байеса оптимальной является четвертая стратегия.

 

  б) Лапласа

по критерию Лапласа вероятность наступления каждого из событий равновероятна.

 

a1=

-916,67

a2=

-904,13

a3=

-895,07

a4=

-890,13

a5=

-889,60

a6=

-894,60

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...
Критерий Лапласа

-889,6

 

По критерию Лапласа оптимальной является  пятая стратегия.

 

  в) Вальда

 

a1=

-1200

a2=

-1176

a3=

-1152

a4=

-1128

a5=

-1032

a6=

-1008

Критерий

Вальда

-1008

 

 

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

По критерию Вальда оптимальной является  шестая стратегия .

 

  г) Сэвиджа

Составим матрицу рисков:

 

 

1

2

3

4

5

6

ri

1

0

10

28

54

140

192

192,00

2

10,8

0

14

36

120

168

168,00

3

21,6

10,8

0

18

100

144

144,00

4

32,4

21,6

10,8

0

80

120

120,00

5

75,6

64,8

54

43,2

0

24

75,60

6

86,4

75,6

64,8

54

10,8

0

86,40

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

Критерий Сэвиджа

75,60

По критерию Сэвиджа оптимальной является пятая стратегия.

 д) Гурвица

 

        a=

 

0,7

A1

-1056

A2

-1042,44

A3

-1028,88

A4

-1015,32

A5

-961,08

A6

-947,52

Критерий Гурвица

-947,52

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

Критерий Гурвица

 

По критерию Гурвица оптимальной является шестая стратегия.

6.Задача линейного программирования

Для того, чтобы составить задачу линейного программирования, приведём платёжную матрицу к положительному виду по формуле:

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

  В результате получаем следующую таблицу:

 

0

46

100

162

392

480

10,8

36

86

144

372

456

21,6

46,8

72

126

352

432

32,4

57,6

82,8

108

332

408

75,6

100,8

126

151,2

252

312

86,4

111,6

136,8

162

262,8

288

 

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

 Игрок A стремится сделать свой гарантированный выигрыш V возможно больше, а значит возможно меньше величину φ

 Учитывая данное соглашение, приходим к следующей задаче: минимизировать линейную функцию.

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

pi =Хi*V –c какой вероятностью необходимо нанять i-ую бригаду.

Целевая функция:

Х1+Х2+Х3+Х4+Х5+Х6®MIN

 Ограничения:

10,8*Х2+21,6*Х3+32,4*Х4+75,6*Х5+86,4*Х6³1 

46*Х1+36*Х2+46,8*Х3+57,6*Х4+100,8*Х5+111,6*Х6³1

100*Х1+86*Х2+72*Х3+82,8*Х4+126*Х5+136,8*Х6³1

162*Х1+144*Х2+126*Х3+108*Х4+151,2*Х5+162*Х6³1

392*Х1+372*Х2+352*Х3+332*Х4+252*Х5+262,8*Х6³1

480*Х1+456*Х2+432*Х3+408*Х4+312*Х5+288*Х6³1

Хi³0;

Решив данную задачу линейного программирования на ПВЭМ, получим минимальное значение целевой функции φ=0,011574 и значения Xi:

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...                        Х1=0, Х2=0, Х­3=0, Х4=0, Х5=0, Х6=0,01157407.  

Затем, используя формулу

 Определение стратегии руководства перерабатывающего предприятия по сезонному набору силы с учетом ра...

определим цену игры

 

Р6=0,01157407*86,4=1.

Это значит, что наименьший убыток Директор получит при применении

стратегии A6 при любом уровне производства.

Двойственная задача:

qj =Yj*V– вероятность i-го уровня производства (i=1,2,…,6).

 Целевая функция:

Y1+Y2+Y3+Y4+Y5+Y6®MAX

 Ограничения:

46*Y2+100*Y3+162*Y4+392*Y5+480*Y6≤1

10,8*Y1+36*Y2+86*Y3+144*Y4+372*Y5+456*Y6≤1

21,6*Y1+46,8*Y2+72*Y3+126*Y4+352*Y5+432*Y6≤1

32,4*Y1+57,6*Y2+82,8*Y3+108*Y4+332*Y5+408*Y6≤1

75,6*Y1+100,8*Y2+126*Y3+151,2*Y4+252*Y5+312*Y6≤1

86,4*Y1+111,6*Y2+136,8*Y3+162*Y4+262,8*Y5+288*Y6≤1

Yj³0;

 

7. Программа (листинг)

Программа находит оптимальную стратегию по критерию Вальда.

 

program Natasha;

 uses crt;

 var

  d,m,n,i,j,L:integer;

  MAX:REAL;

  a:array[1..6,1..6] of real;

  b,c,min:array[1..6] of real;

  begin

  l:=1;

  clrscr;

  write('Введите n: ');

  readln(N);

  WRITELN(' Введите цену одного рабочего при i-ом уровне производства');

  FOR I:=1 TO n DO

   BEGIN

    WRITE('B',I,'=');

    READLN(b[I]);

   END;

  writeln('Введите число нанимаемых рабочих при j-ом уровне производства');

   FOR j:=1 TO n DO

   BEGIN

    WRITE('A',j,'=');

    READLN(c[j]);

   END;

    write('Зарплата вне сезона: ');

    readln(d);

  FOR I:=1 TO n DO

   BEGIN

    FOR j:=1 TO n DO

     BEGIN

      if c[i]<c[j] then a[i,j]:=-(d*c[i]+(c[j]-c[i])*b[j])

                   else a[i,j]:=-(d*c[i]-(c[i]-c[j])*d*0.7);

     END

   END;

   for i:=1 to n do

    begin

    for j:=1 to n do

     write(' ',a[i,j]:5:1);

     writeln(' ');

    end;

   for i:=1 to n do   begin

     min[i]:=a[i,1];

     for j:=1 to n do if min[i]>a[i,j] then min[i]:=a[i,j];

     if i=1 then max:=min[1];

      if max<min[i] then begin  max:=min[i]; l:=i; end;

   end;

 WRITELN('По кpитерию Вальда оптимальная ',L,'-я стpатегия,MAX сpедний pиск=',MAX:8:3);

 end.

 

 

8. Решение задачи, выданное программой.

В результате выполнения программы по условию этой задачи получили такой ответ: "По кpитерию Вальда оптимальная 6-я стpатегия, MAX сpедний   выигрыш = -1008".

9. Вывод:

в результате анализа предложенной ситуации мы пришли к выводу, что Директору консервного завода имеет смысл применять 4-ю стратегию по критерию Байеса, 5-ю - по критериям Сэвиджа и Лапласа и 6-ю - по критерию Гурвица и Вальда. Директору завода можно порекомендовать придерживаться стратегии A4(по критерию Байеса), т.е. нанимать не менее 23-х рабочих вне сезона, т.к. в данном критерии высчитывается средний выигрыш игрока A с учетом вероятностей состояния природы.


РЕКЛАМА

рефераты НОВОСТИ рефераты
Изменения
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер


рефераты СЧЕТЧИК рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты © 2010 рефераты