рефераты рефераты
Домой
Домой
рефераты
Поиск
рефераты
Войти
рефераты
Контакты
рефераты Добавить в избранное
рефераты Сделать стартовой
рефераты рефераты рефераты рефераты
рефераты
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты
 
МЕНЮ
рефераты Прогнозирование временных рядов рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Прогнозирование временных рядов

Прогнозирование временных рядов

Министерство общего и профессионального образования РФ

 

Башкирский государственный университет

 

Кафедра финансов и налогообложения

 

 

 

 

КУРСОВАЯ РАБОТА

на тему “Прогнозирование временных рядов”

 

 

 

 

выполнила студентка 3 курса

экономического факультета

гр. 3.6. Абдулалимова А.А.

Научный руководитель –

Саяпова А.Р.

 

 

 

 

 

 

 

 

 

 

Уфа - 2001

Содержание

 

1.Теоретическая часть                                                                                   3

2.Характеристика исходных данных                                                          6

3.Практическая часть

3.1.Компонентный анализ

3.1.1.Оценка и удаление тренда                                                                   8

3.1.2.Оценка и удаление сезонной компоненты                                      10

3.1.3.Моделирование ССП                                                                         11

3.1.4.Установление адекватности модели                                                17

3.2.Адаптивные модели                                                                               20

4.Вывод                                                                                                          23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Теоретическая часть.

Термин экономико-математические методы понимается как обобщающее название комплекса экономических и математических научных дисциплин, объединенных для изучения экономических процессов и систем.

Основным метод исследования систем является метод моделирования, т.е. способ теоретического анализа и практического действия, направленный на разработку и использование моделей. При этом под моделью будем понимать образ реального процесса, отражающий его существенные свойства.

Под задачами экономико-математического моделирования понимаются: анализ экономических объектов и процессов, экономическое прогнозирование, предвидение развития экономических процессов.

Мы рассматриваем два вида экономико-математических моделей: адаптивные модели и компонентный анализ.

Адаптивные модели прогнозирования – это модели, способные приспосабливать свою структуру и параметры к изменению условий.

Общая схема построения адаптивных моделей может быть представлена следующим образом. По нескольким первым уровням ряда оцениваются значения параметров модели. По имеющейся модели строится прогноз на один шаг вперед, причем его отклонение от фактических уровней ряда расценивается как ошибка прогнозирования, которая учитывается в соответствии со схемой корректировки модели. Далее по модели со скорректированными параметрами рассчитывается прогнозная оценка на следующий момент времени и т.д. Т.о. модель постоянно учитывает новую информацию и к концу периода обучения отражает тенденцию развития процесса, существующую в данный момент.

В курсе математического моделирования мы рассматриваем три адаптивные модели: модель Брауна, модель Хольта и модель Хольта-Уинтерса. Эти модели имеют параметры сглаживания: модель Брауна – один, модели Хольта и Хольта-Уинтерса – два и три соответственно.

Теперь о компонентном анализе временных рядов. Временной ряд состоит из нескольких компонент: тренд, сезонная компонента, циклическая компонента (стационарный случайный процесс) и случайная компонента.

Под трендом понимается устойчивое систематическое изменение процесса в течение продолжительного времени. Оценка тренда осуществляется параметрическим и непараметрическим методами. Параметрический метод заключается в подборе гладкой функции, которая описывала бы тенденцию ряда: линейный тренд, полином и т.д. Непараметрический метод используется, когда нельзя подобрать гладкую функцию и заключается в механическом сглаживании временных рядов методом скользящей средней.

Во временных рядах экономических процессов могут иметь место более или менее регулярные колебания. Если они строго периодический или близкий к нему характер и завершаются в течении одного года, то их называют сезонными колебаниями. Оценка сезонной компоненты осуществляется двумя способами: с помощью тригонометрических функций и методом сезонных индексов.

В тех случаях, когда период колебаний составляет несколько лет, то говорят, что во временном ряде присутствует циклическая компонента или стационарный случайный процесс. Моделирование ССП осуществляется следующими методами: модель авторегрессии (АР), модель скользящего среднего (СС), модель авторегрессии скользящего среднего (АРСС) и модель авторегрессии проинтегрированного скользящего среднего (АРПСС).

Авторегрессионный процесс – процесс, в котором значения находятся в линейной зависимости от предыдущих. АР бывают первого порядка (Марковский процесс) и второго(процесс Юла). Порядок АР обозначается через p.

В моделях скользящего среднего мы выделяем период запаздывания (q).

Если у нас присутствуют и p и q, то мы имеем дело с моделью АРСС.

В моделях АР, СС, АРСС моделируют ряд без тренда и сезонной компоненты, т.е. ССП. Модель АРПСС позволяет исключить тренд путем перехода к разностям исходного ряда. Порядок разности, при котором ряд становится ССП дает нам d, которая является третьей неизвестной необходимой при моделировании АРПСС плюс ранее упомянутые p и q.

Прогнозирование с помощью компонентного анализа состоит из следующих шагов: оценка и удаление тренда, оценка и удаление сезонной компоненты, моделирование ССП, конструирование прогнозной модели и выполнение прогноза.

В конце, после прогнозирования мы проверяем полученную модель на адекватность, т.е. соответствие модели исследуемому объекту или процессу. Т.к. полного соответствия модели реальному процессу или объекту быть не может, адекватность – в какой-то мере – условное понятие. Модель временного ряда считается адекватной, если правильно отражает систематические компоненты временного ряда.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.Характеристика исходных данных.

Дата

Данные

 

 

Дата

Данные

17.09.2001

87,5546

 

 

31.10.2001

90,1826

18.09.2001

87,4391

 

 

1.11.2001

89,8761

19.09.2001

84,5301

 

 

2.11.2001

91,5291

20.09.2001

83,7572

 

 

5.11.2001

93,2659

21.09.2001

79,2693

 

 

6.11.2001

93,1579

24.09.2001

82,4232

 

 

7.11.2001

94,5799

25.09.2001

84,3556

 

 

8.11.2001

95,0691

26.09.2001

84,5737

 

 

9.11.2001

94,7875

27.09.2001

83,9814

 

 

12.11.2001

93,4776

28.09.2001

86,3375

 

 

13.11.2001

95,5143

1.10.2001

86,599

 

 

14.11.2001

96,8397

2.10.2001

87,3761

 

 

15.11.2001

97,4543

3.10.2001

88,0099

 

 

16.11.2001

97,5407

4.10.2001

89,8228

 

 

19.11.2001

98,2696

5.10.2001

88,9447

 

 

20.11.2001

98,2506

8.10.2001

89,3786

 

 

21.11.2001

97,4645

9.10.2001

89,2734

 

 

22.11.2001

98,0953

10.10.2001

89,7515

 

 

23.11.2001

98,0437

11.10.2001

92,0404

 

 

26.11.2001

98,6222

12.10.2001

91,4634

 

 

27.11.2001

97,7607

15.10.2001

91,8107

 

 

28.11.2001

96,628

16.10.2001

92,3968

 

 

29.11.2001

96,2972

17.10.2001

91,9989

 

 

30.11.2001

97,5226

18.10.2001

90,6101

 

 

3.12.2001

96,5187

19.10.2001

90,8081

 

 

4.12.2001

97,0024

22.10.2001

91,0108

 

 

5.12.2001

98,7592

23.10.2001

92,4902

 

 

6.12.2001

99,9798

24.10.2001

92,1829

 

 

7.12.2001

99,3854

25.10.2001

91,4308

 

 

10.12.2001

98,6803

26.10.2001

93,6935

 

 

11.12.2001

97,9448

29.10.2001

92,3283

 

 

12.12.2001

97,4542

30.10.2001

90,1196

 

 

13.12.2001

96,913

 

Эти данные – это низшая отметка индекса Доу Джонса на торгах. Данные взяты с интернета на период с 17 сентября по 13 декабря 2001г. Показания являются ежедневными, в неделе 5 дней торгов. Нужно будет дать прогноз на 26 декабря 2001г.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.Практическая часть.

3.1.Компонентный анализ.

3.1.1.Оценка и удаление тренда.

А.) Сперва нужно выяснить, имеет ли исходный ряд тренд. Для этого проводится спектральный анализ исходного ряда.

 

 Прогнозирование временных рядов

рис.1

 

На рис.1 показан спектр исходного ряда, по которому видно, что в ряде присутствует тренд.

Б.)Для того чтобы оценить тренд параметрическим методом подберем гладкую функцию, описывающую долгосрочную тенденцию исходного ряда.

На рис.2 - график исходного ряда и линейный тренд описывающий его тенденцию. Наш временной ряд имеет тенденцию к росту.

В.) Теперь, определив тренд, нужно его удалить вычитанием из исходного ряда.

На рис.3 показан график исходного временного ряда только уже без тренда.

 

 Прогнозирование временных рядов

рис.2

 

 Прогнозирование временных рядов

рис.3

 

3.1.2.Оценка и удаление сезонной компоненты.

А.) Выяснение наличия сезонной компоненты в ряде с удаленным трендом производится, как и в случае тренда, с помощью спектрограммы. Смотрится спектр ряда с удаленным трендом и выясняется наличие или отсутствие сезонности. В случае ее наличия также по спектрограмме находится период колебаний и потом удаляется сезонная компонента.

 

 Прогнозирование временных рядов

рис.4

 

На рис.4 представлена спектрограмма ряда с удаленным трендом.

Б.) По спектрограмме видно, что в данном ряде сезонность отсутствует. Теперь можно приступать к моделированию случайного стационарного процесса (ССП).

 

3.1.4.Моделирование ССП.

Мы проведем моделирование ССП методами АРСС и АРПСС, а потом выберем наиболее верный.

А.) Модель АРСС строится на ряде с удаленным трендом и сезонной компонентой. Сначала выясняют порядки p и q. Для того, чтобы их выяснить, строят коррелограммы АКФ для нахождения q и ЧАКФ для нахождения p. Их строят на ряде с удаленным трендом и сезонной компонентой.

 

 Прогнозирование временных рядов

рис.5

 

На рис.5 показана коррелограмма АКФ, на рис.6 – ЧАКФ. С помощью этих коррелограмм и эмпирического поиска наименьшей среднеквадратичной ошибки мы определяем неизвестные параметры: p=2, q=1.

Теперь можно приступать к моделированию ССП методом АРСС.

 Прогнозирование временных рядов

рис.6

 

 Прогнозирование временных рядов

рис.7

На рис.7 смоделирован ССП методом АРСС с параметрами p=2, q=1 и среднеквадратичной ошибкой 1,5822. Дальнейшее преобразование в прогноз временного ряда осуществляется сложением тренда и смоделированного ССП (рис.8).

 

 Прогнозирование временных рядов

рис.8

Дата

Прогноз

14.12.2001

97,8013

17.12.2001

98,6445

18.12.2001

99,4309

19.12.2001

100,154

20.12.2001

100,809

21.12.2001

101,397

24.12.2001

101,921

25.12.2001

102,383

26.12.2001

102,791

 

Б.) Моделирование с помощью АРПСС производится на исходном ряде. Перво-наперво нужно определить порядки p, d и q. На практике это делается на основе разностей только первого или второго порядков. Термин «проинтегрированный» означает, какого порядка нужно взять разность, чтобы получить ССП. Тогда порядком разности и будет d. p и q определяются с помощью коррелограмм ЧАКФ (рис.10) и АКФ (рис.9) ССП, полученного разностями.

Порядок мы определили: d=1. Но порядки p и q трудно определить по нашим коррелограммам, и поэтому мы их определяем эмпирическим методом по наименьшей среднеквадратичной ошибке: p=1, q=2.

 

 Прогнозирование временных рядов

рис.9

 Прогнозирование временных рядов

рис.10

 

Теперь строим модель АРПСС.

На рис.11 построена модель АРПСС с параметрами p=1, d=1, q=2. Среднеквадратичная ошибка равна 1,6853. прогноз на 26.12.2001 равен 99,429.

 Прогнозирование временных рядов

рис.11

Дата

Прогноз

14.12.2001

97,179

17.12.2001

97,539

18.12.2001

97,868

19.12.2001

98,17

20.12.2001

98,452

21.12.2001

98,715

24.12.2001

98,965

25.12.2001

99,202

26.12.2001

99,429

 

3.1.4.Установление адекватности модели.

Для определения адекватности модели строится спектрограмма ряда остатков после моделирования ССП. Модель считается адекватной, если спектр этого ряда является спектром «белого шума». Спектр «белого шума» представляет собой линию горизонтальную оси абсцисс.

Спектр ряда, оставшегося после моделирования АРСС (рис.12) далеко не похож на спектр «белого шума». Это говорит о том, что эта модель не является адекватной.

 

 Прогнозирование временных рядов

рис.12

 

 Прогнозирование временных рядов

рис.13

Спектральный анализ остатков после моделирования АРПСС (рис.13) также говорит о том, что построенная модель является неадекватной.

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.Адаптивные модели.

Строить прогноз с помощью адаптивных моделей мы будем моделью Хольта.

 

 Прогнозирование временных рядов

рис.14

Дата

Прогноз

14.12.2001

97,063

17.12.2001

97,211

18.12.2001

97,36

19.12.2001

97,509

20.12.2001

97,657

21.12.2001

97,806

24.12.2001

97,954

25.12.2001

98,103

26.12.2001

98,251

 

 

На рис.14 построена адаптивная модель Хольта нашего исходного ряда. Параметры адаптации следующие: Альфа=0,998, Гамма=0. Среднеквадратичная ошибка равна 1,6469. Прогноз на 26.12.2001 составляет 98,251. По спектру ряда остатков (рис.15) видно, что эта модель является неадекватной.

 

 Прогнозирование временных рядов

рис.15

 

 

 

 

 

 

 

 

 

 

4.Вывод.

Мы рассмотрели три модели – АРСС, АРПСС, адаптивную модель Хольта. Все построенные модели являются неадекватными. Тем не менее мы должны выбрать наиболее подходящую, ту, которая дает наиболее правдоподобный прогноз.

Модель АРПСС содержит наибольшую из трех моделей среднеквадратичную ошибку. Да и график прогноза не очень хорошо вписывается в динамику всего предыдущего процесса.

Адаптивная модель Хольта содержит чуть меньшую среднеквадратичную ошибку, чем АРПСС, но график ее прогноза, во всяком случае, не лучше совпадает с общей динамикой, показывая менее крутой подъем индекса, чем на протяжении всего ряда.

Наиболее удачной я считаю модель АРСС. Она содержит, пусть не сильно отличающуюся, но наименьшую среднеквадратичную ошибку. Ее прогноз показывает рост индекса, причем он более или менее соблюдает динамику всего временного ряда, динамику роста.

Т.о. я останавливаюсь на прогнозе, сделанном с помощью модели АРСС (рис.16).

 

 Прогнозирование временных рядов

рис.16

 

p=2, q=1, MS(среднеквадратичное отклонение)=1,5822.

 


Дата

Прогноз

14.12.2001

97,8013

17.12.2001

98,6445

18.12.2001

99,4309

19.12.2001

100,154

20.12.2001

100,809

21.12.2001

101,397

24.12.2001

101,921

25.12.2001

102,383

26.12.2001

102,791

 


РЕКЛАМА

рефераты НОВОСТИ рефераты
Изменения
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер


рефераты СЧЕТЧИК рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты © 2010 рефераты