![]() |
![]() |
![]() |
|
|||||||||
|
![]() | |||||||||||
|
![]() |
||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Транспортная задача и задача об использовании сырьяТранспортная задача и задача об использовании сырья1. Решить задачу об использовании сырья геометрическим способом и симплекс методом, дать экономическую интерпретацию.
Геометрический способ. Пусть Цель задачи (максимализация прибыли) запишется в виде Структура всех трёх ограничений
одинакова Перейдём из неравенств к уравнениям Построим прямые на плоскости Многоугольник решений
Симплекс метод. Приведём систему неравенств к системе уравнений Целевая функция – функция прибыли Составим симплекс таблицу: - Первое ограничение запишем в первую строку - Второе ограничение запишем во вторую строку - Третье ограничение запишем в третью строку Целевую функцию запишем в
В строке Проведём одну интеракцию метода замещения Жордано-Гаусса. Столбцы. Разрешающий элемент равен
В строке Следовательно, переменная
В строке
Так как в строке Оптимальный план найденный геометрическим способом и
симплексным методом совпадают. Предприятию необходимо выпускать 12 единиц
продукции первого вида и 5 единиц продукции второго вида. В этом случае
предприятие получит прибыль
2. Решить транспортную задачу распределительным методом, оценивая свободные клетки по методу потенциалов.
Проверим необходимое и достаточное условие разрешимости задачи Потребность в грузе равна запасам груза Используя метод наименьшей стоимости заполним таблицу. Среди тарифов наилучшим является в клетку в клетку в клетку в клетку в клетку в клетку в клетку Запасы поставщиков исчерпаны, запросы потребителей
удовлетворены полностью. В результате получили первый опорный план. Подсчитаем
число занятых клеток таблицы их 7, а должно быть Определим значение целевой функции первого опорного плана Проверим оптимальность плана. Найдём потенциалы Пусть Подсчитаем оценки свободных клеток Первый опорный план не является оптимальным так как Переходим к его улучшению. Для клетки В результате получили новый опорный план
Определим значение целевой функции Проверим оптимальность плана
Подсчитаем оценки свободных клеток План близок к оптимальному. При дальнейшем перераспределении груза, задача входит в циклическую фазу, план не улучшается. Таким образом, полученное решение является наиболее оптимальным для нашей задачи
|
РЕКЛАМА
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
![]() |
© 2010 | ![]() |