|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Задачи по финансамЗадачи по финансамУНИВЕРСИТЕТ РОССИЙСКОЙ АКАДЕМИИ ОБРАЗОВАНИЯ
Факультет: Бизнес, Маркетинг, Коммерция Дисциплина: Финансовая математика
Ф.И.О. студента: Спрыжков Игорь Максимович Курс: 3. Семестр: 5.
Дата сдачи: _____________________ Ученая степень преподавателя: _______________________________________ Ф.И.О.: Осташкин С.В. Оценка: _________________________ Подпись: _________________________ Дата проверки: __________________ Задача 1. Капитал величиной 4000 денежных единиц (д.е.) вложен в банк на 80 дней под 5% годовых. Какова будет его конечная величина.Решение. Способ 1. , K’ = K + I = 4000+44=4044, где K – капитал или заем, за использование которого заемщик выплачивает определенный процент; I – процентный платеж или доход, получаемый кредитором от заемщика за пользование денежной ссудой; p – процентная ставка, показывающая сколько д.е. должен заплатить заемщик за пользование 100 ед. капитала в определенном периоде времени (за год); d – время, выраженное в днях. 360 – число дней в году. Способ 2. Время t = 80/360 = 2/9. K’ = K + K×i×t = 4000(1 + 0.05×2/9) = 4044, где i – процентная ставка, выраженная в долях единицы, t – время, выраженное в годах. Задача 2. На сколько лет нужно вложить капитал под 9% годовых, чтобы процентный платеж был равен его двойной сумме.Решение 2×K = I. 2×K = K×9×g/100, g = 2×100/9 = 22.22 Задача 3. Величина предоставленного потребительского кредита – 6000 д.е., процентная ставка – 10% годовых, срок погашения – 6 месяцев. Найти величину ежемесячной выплаты (кредит выплачивается равными долями).Решение Таблица 1 План погашения кредита (амортизационный план) | |||||
Месяц |
Долг |
Процентный |
Выплата |
Месячный
|
||
|
6000 |
10% |
|
|
||
1 |
5000 |
50 |
1000 |
1050 |
||
2 |
4000 |
42 |
1042 |
|||
3 |
3000 |
33 |
1033 |
|||
4 |
2000 |
25 |
1025 |
|||
5 |
1000 |
17 |
1017 |
|||
6 |
¾ |
8 |
1008 |
|||
|
|
175 |
6000 |
6175 |
Объяснение к таблице
Месячная выплата основного долга составит:
K / m = 6000/6 = 1000.
Месячный взнос представляет собой сумму выплаты основного долга и процентного платежа для данного месяца.
Процентные платежи вычисляются по формуле:
,
где I1 – величина процентного платежа в первом месяце;
p – годовая процентная ставка, %.
Общая величина выплат за пользование предоставленным кредитом:
=175.
Общая величина ежемесячных взносов:
=1029.
Решение
Так как нам известна номинальная величина векселя, дисконт, находим по формуле:
=409,
где Kn – номинальная величина векселя;
d – число дней от момента дисконтирования до даты погашения векселя;
D – процентный ключ или дивизор (D = 3600/p = 36000/8 = 4500).
Дисконтированная величина векселя равна разности номинальной стоимости векселя и дисконта (процентного платежа):
20000 – 409 = 19591.
Решение
При декурсивном (d)расчете сложных процентов:
Kmn = K×Ip/mmn, Ip/m = 1 + p/(100×m),
где Kmn – конечная стоимость капитала через n лет при p% годовых и капитализации, проводимой m раз в год.
а) K = 20000×I2.54 = 20000×(1 + 10/(100×4))4 = 20000×1.104 = 22076 д.е.
б) K = 20000×I10/1212 = 20000×(1 + 10/(100×12))12 = 20000×1.105 = 22094 д.е.
При антисипативном (a) способе расчета сложных процентов:
Kmn = K×Iq/mmn, Iq/m = 100m/(100m - q),
где q – годовой прцент.
а) K = 20000×(100×4/(100×4 – 10))4 = 20000×1.107 = 22132 д.е.
б) K = 20000×(100×12/(100×12 – 10))12 = 20000×1.106 = 22132 д.е.
Решение
= 6.779%.
Решение
K0
= Kn×r-n = Kn×II8%20 = Kn×(1 + p/100)-n
= 200000×(1 + 8/100)-20 =
= 200000×0.21454 = 42909 д.е.,
где r = (1 + p/100) – сложный декурсивный коэффициент.
Решение
Сначала для годовой процентной ставки 8% определим процентную уравнивающую ставку:
=1.9427%
Затем полученную уравнивающую ставку поместим в следующую формулу:
Svmn = u×, где rk = 1 + pk/100,
где v – число вкладов в расчетном периоде,
n - число лет,
m – число капитализаций в год.
тогда
rk = 1 + 1.9427/100 = 1.0194
S4×10 = 500× = 500×60.8157 = 30407.84 д.е.
Решение
,
u1 = u×I2%4 / III2% = 2000×1.0824 / 4.204 = 514.93 д.е.
Snm = 514.93×III2%3×4 + 2000 =
514.93×13.6803 + 2000 =
= 9044.41 д.е.
Решение
Решение
При ежегодной капитализации:
C0 = a×IVpn = 5000×IV8%10 = 5000×6.71=33550
Решение
Таблица 2
План погашения займа (амортизационный план)
Год
Долг
Процентный
платеж
Выплата
долга
Аннуитет
1
20000
400
1826.53
2226.53
2
18173.47
363.47
1863.06
3
16310.41
326.21
1900.32
Пояснения к таблице
Аннуитет вычисляем по формуле:
a = K×Vpn = 20000×V2%10 = 20000×0.1113 = 2226.53 д.е.
Чтобы определить выплату задолженности b1, вычисляем величину процентного платежа I:
I1 = K1×p/100 = 20000×2/100 = 400 д.е.
Выплата задолженности представляет собой разницу между аннуитетом и процентным платежом:
b1 = a – I1 = 2226.53 – 400 = 1826.53 д.е.
Таким образом, после первого года долг сократится на 1826.53 д.е. Остаток долга равен:
K2 = 20000 - 1826.53 = 18173.47 д.е.
Вычислим процентный платеж на остаток долга:
I2 = 18173.47×2/100 = 363.47 д.е.
Вторая выплата составит:
b2 = a – I2 = 2226.53 – 363.47 = 1863.06 д.е.
Долг уменьшится на величину 1863.06, остаток долга составит:
K3 = 18173.47 – 1863.06 = 16310.41 д.е.
Далее
I3 = 16310.41×2/100 = 326.21 д.е.
Третья выплата задолженности составит:
b3 = a – I3 = 2226.53 – 326.21 = 1900.32 д.е.
Список использованной литературы
1. Кочович Е. Финансовая математика: Теория и практика финансово-банковских расчетов. – М.: Финансы и статистика, 1994.
НОВОСТИ | ||
Изменения | ||
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер |
СЧЕТЧИК | ||
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |