|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Экспериментальное подтверждение двойственности свойств магнитного поляЭкспериментальное подтверждение двойственности свойств магнитного поляЭкспериментальное подтверждение двойственности свойств магнитного поля. Кузнецов Ю.Н. 1.Природа двойственности. Пространственные распределения векторных магнитных потенциалов поля элемента однонаправленного тока зарядов А = f (J ), (1) и скалярных потенциалов поля гипотетического монополя Дирака φm = f (m ) (2) различаются следующим образом. У токового поля эквипотенциальные поверхности имеют вид концентричных цилиндрических оболочек, преобразующиеся в себя при поворотах вокруг своей оси. У зарядового поля эквипотенциальные поверхности подобны концентричным сферическим оболочкам, преобразующимся в себя при любом пространственном повороте относительно своего центра. Очевидно, что потенциальное шарообразное магнитное поле геометрически симметричнее цилиндрообразного циркуляционного. Поскольку симметрии причины и следствия не могут быть разными, то природа двойственности магнитного поля обусловлена двумя видами геометрической симметрии его источников. Это согласуется с тем, что плотность тока в (1) описывается цилиндрообразным аксиальным векторм, а магнитный заряд в (2) – шарообразным скаляром [1]. В статье будет дано теоретическое обоснование и опытное подтверждение тому, что более симметричным по отношению к однонаправленному локальному току зарядов (J) может быть не только гипотетический монополь Дирака (m), но и локальная идеализация сферического центрально-симметричного распределения токовых элементов, которому соответствует такая же симметрия поля магнитных потенциалов |A| = f (|J|). (3) Скалярный характер шарообразного источника и его поля магнитных потенциалов обусловлен отсутствием выделенного у них пространственного направления. Предложенная локальная идеализация имеет практически реализуемый протяжённый аналог в виде расширения (сжатия) электрически заряженной упругой сферической оболочки. 2. Двойственность локальной идеализации токового источника. Локальная совокупность произвольно направленных элементов тока зарядов характеризуется суммарным однонаправленным вектором. При центрально-симметричном распределении векторов плотности тока геометрическое суммирование даёт в итоге нуль-вектор. Аналогичный результат получается для коллинеарных токам векторов магнитного потенциала (Рис.1).
∑J ∑J = 0 ∑А = 0
Рис.1
Как и в любой магнитостатической ситуации, в центрально-симметричной, радиально движущиеся вслед за своими зарядами электрические поля обладают кинетическими энергиями положительного знака. В отличии от токовых и полевых векторов они взаимно не компенсируются. Следовательно, скалярная сумма кинетических энергий имеет конечную величину, которой эквивалентно общее магнитное поле. Выявленное истинное противоречие между наличием конкретного количества магнитной энергии и нуль-векторным описанием источника и его магнитного поля имеет фундаментальную основу. Скалярное суммирование кинетических энергий подчиняется принципу сохранения энергии. А геометрическое суммирование токовых и полевых векторов – принципу суперпозиции. Суть разрешения противоречия ясна. Если есть магнитная энергия, то должно быть конкретное описание источника магнитного поля. И самого поля с конкретным магнитным свойством. Поскольку математически корректные, но физически иррациональные, нуль-векторы тока и магнитного потенциала для этих целей не годится, то заменой им могут быть скалярные суммы модулей векторов, содержащие количественные характеристики ∑J ≡ |J| , (4) ∑А ≡ |А|. (5) Отсутствие у обоих скалярных сумм выделенного пространственного направления согласуется с шарообразной симметрией локальной магнитостатики. Переход от неизбежного нуль-векторного результата к логически оправданной скалярной сумме модулей (4) является теоретическим обоснованием двойственности локальных токов J = ρ V, (6) | J | = ρ |V|. (7) Разные по своей геометрической симметрии причины --цилиндрообразный и шарообразный токи-- порождают соответствующие им следствия - цилиндрообразное и шарообразное поля магнитных напряжённостей J = rotH, (8) | J | = div|H|. (9) 3.Двойственность магнитной силы. На рисунке.2 изображена идеализация протяжённых аксиальных центрально-симметричных токов из [2], [4]. i1 i2
∑V Продольная магнитная сила Q
Рис.2 Поля токовых зарядов воздействуют на ортогонально движущийся (сближающийся) пробный заряд. В соответствие с идеей Э.Парселла [3] пример рассматривается в системе покоя пробного заряда. В этом случае токовые заряды участвуют в двух движениях – вдоль проводника и в относительном сближении с пробным зарядом, что приводит к наклонам «сплющенных» диаграмм силовых линий. Очевидно, что продольная направленность магнитной силы обусловлена центральной симметрией наложения на пробный заряд релятивистски сгущённых и разряжённых электрических силовых линий, что, в свою очередь, обусловлено центральной симметрией движения токовых зарядов. Картина центрально-симметричного наложения силовых линий сохраняется при замене аксиальных центрально-симметричных двухзарядовых токов движением зарядов одного знака вместе с расширяющееся (сжимающейся) сферической оболочкой. Абстрактная локальная идеализация сферического распределения токовых элементов имеет протяжённый аналог. Однако, образуемое таким образом реальное потенциальное магнитное поле недоступно опытной регистрации ввиду своей малости. В подтверждающих экспериментах использовались электротоковые источники. Как с разнесёнными, так и с совмещёнными центрально-симметричными токами зарядов. 4.Опытное обнаружение безвихревого вида электромагнитной индукции. Решалась задача регистрации нагрева алюминиевой втулка возвратно-поступательными индукционными токами. В качестве дипольного источника потенциального магнитного поля использовались центрально-симметричные токи в паре рядом расположенных многовитковых (n = 300) прямоугольных рамок. На линии симметрии, (на расстоянии L = 6 см. от одной из двух пар разнесённых противотоков) располагалась алюминиевая втулка с полупроводниковым стабилитроном внутри (100 кОм/градус). Момент начала изменения температуры втулки определялся по изменению омического сопротивления (в обратном направлении) стабилитрона, которое фиксировалось цифровым мультиметром DT880B. Методика эксперимента заключалась в регистрации интервалов времени (∆1, ∆2 ) между моментами поочерёдного подключения рамок к источникам стационарного и переменного тока и началами нагрева полупроводникового кристалла стабилитрона теплом от втулки. При стационарных токах интервал времени (∆1) до начала нагрева зависит только от воздействия потока джоулева тепла, выделяемого токами в рамках. Если при переменных токах временной интервал (∆2 ) будет меньше, то это укажет на участие в нагреве индукционного явления. Рамки и втулка разделялись теплоинерционной защитой, увеличивающей интервал времени до начала заметного воздействия джоулева тепла. Мультиметр позволял регистрировать изменение омического сопротивления стабилитрона на 1 кОм в (рабочем интервале 300…700 кОм), что было эквивалентно нагреву кристалла стабилитрона на 0,01ºС. С целью упрощения расчёта предполагалось, что нагрев кристалла стабилитрона на 0,01ºС в регистрируемых интервалах времени (4 – 9 мин.) происходит при нагреве алюминиевой втулки на 0,015ºС. Требуемая для такого нагрева втулки энергия вычислялась следующим равенством W = 4,18 m c ∆ t. (10) Интервал времени (∆1 ) между моментами подключения рамок к источнику переменного тока и регистрацией начала нагрева кристалла (на 0,01ºС). позволял посредством (11) вычислить суммарную мощность совместного нагрева втулки (на 0,015ºС ) полевым воздействием и джоулевым теплом. N1 = Вт. (11) Интервале времени (∆2) между моментами подключения рамок к источнику стационарного тока и регистрацией начала нагрева кристалла позволял посредством (11) вычислить мощность нагрева втулки только джоулевым теплом N2 = Вт. (12) Разница между (12) и (11) являлась мощностью только индукционного нагрева N3 = N2 - N1 (13) Для теоретической оценки индуктируемого электрического поля в нагреваемом объёме втулки V c площадью поперечного сечения F использовалась интегральная форма записи , (14) полученная посредством преобразования дифференциального уравнения безвихревого вида электромагнитной индукции - divEБ . (15) В приближении однородности потенциального магнитного поля из (14) получаем упрощённую запись ЕБ ≈ ω | BБ | , (16) где ≡ h (17) является глубиной проникновения переменного электромагнитного поля в материал втулки (h = 1, 34 10м). Подставляя в формулу мощности нагрева проводника N4 = σ EV (18) равенства (16), (17), имеем N4 = σ ωμ hF H (19) Параметры и результаты двух вариантов опытов сведены в таблице 1 Таблица 1
Циркуляционного магнитного поля в месте расположения втулки не было, что подтверждалось практически с использованием измерительной катушки, в которой ЭДС не наводилась. В опытах имело место переменное электрическое поле избыточных зарядов, являвшегося причиной магнитоэлектрической индукции. Поскольку поле избыточных зарядов проникает в тонкий поверхностный слой проводника (h = 10м), то малый объём индукционного нагрева заметным образом не влиял на результаты опытов. 5.Магнито-термический эффект. Для подтверждения существования стационарного потенциального магнитного поля использовался магнито-термический эффект (МТЭ), аналогичный известному охлаждению электропроводника циркуляционным магнитным полем. Уменьшение температуры электропроводника объясняется уменьшением энтропии системы электронов в нём в связи с некоторым упорядочением их движения магнитным полем. В качестве источника стационарного потенциального магнитного поля вначале использовались разнесённые центрально-симметричные постоянные токи в паре многовитковых рамок. Затем совмещённые противонаправленные токи в коаксиальном кабеле. Охлаждаемым телом был полупроводниковый кристалл стабилитрона ( 200 кОм/град.). В обоих случаях получены положительные результаты. Регистрируемое изменение омического сопротивления характеризовалось постепенным его нарастанием на 2 – 4 кОм в течении некоторого интервала времени. Первое изменение через 0,2 – 1,0 мин. Последнее – через 3 -- 4 мин. Размещение стабилитрона внутри толстостенной стальной втулки (D = 3,4 см., d = 1,8 см., L = 6 см) не являлось препятствием для проявления МТЭ. 6.Заключение. Теоретический переход от стационарной локальной центрально-симметричной магнитостатики (9) к её переменному варианту позволил построить 4-мерную математическую модель локальной безвихревой электродинамики, содержащей описание безвихревых видов индукционных явлений и продольной ЭМВ. Прямые подтверждения существования безвихревого вида электромагнитной индукции и МТЭ являются косвенным подтверждением существования в природе продольных ЭМВ и их светового диапазона. Литература 1. Желудев И.С. Физика кристаллов и симметрия. М., «Наука», 1987г. 2. Кузнецов Ю. Н. Научный журнал русского физического общества, 1-6, 1995 г, 3. Парселл Э. Электричество и магнетизм. М., Высшая школа.,!980г., стр. 191,192. Адреса сайтов 4 Кузнецов Ю. Н. #"#"> http://lovereferats.ru/physics/00012952.html, Продольные электромагитные волны, как следствие симметрийно - физической двойственно сти. |
РЕКЛАМА
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |