|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Физика и энергетикаФизика и энергетикаНетрадиционные источники энергии. Почему именно сейчас, как никогда остро, встал вопрос: что ждет
человечество - энергетический голод или энергетическое изобилие? Не сходят
со страниц газет и журналов статьи об энергетическом кризисе. Из - за нефти
возникают войны, расцветают и беднеют государства, сменяются правительства. Если в конце прошлого века самая распространенная энергия -
энергетическая играла, в общем, вспомогательную и незначительную в мировом
балансе роль, то уже в 1930году в мире было произведено около 300
миллиардов киловатт - часов электроэнергии. Вполне реален прогноз, по
которому в 2000году будет произведено 30 тысяч миллиардов киловатт - часов! Уровень материальной, а, в конечном счете, и духовной культуры людей, находится в прямой зависимости от количества энергии, имеющейся в их распоряжении. Чтобы добыть руду, выплавить из неё металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека всё время растут, да и людей становится всё больше. Так в чём же проблема? Ученые и изобретатели уже давно разработали
многочисленные способы производства энергии, в первую очередь
электрической. Давайте тогда строить всё больше и больше электростанций, и
энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное
решение сложной задачи, оказывается, таит в себе немало подводных камней. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нём химической энергии, преобразовании её в электрическую на тепловых электростанциях. Конечно, способы сжигания топлива стали намного сложнее и совершеннее. Новые факторы - возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды - потребовали нового подхода к энергетике. В разработке Энергетической программы приняли участие виднейшие ученые страны, специалисты различных министерств и ведомств. С помощью новейших математических моделей ЭВМ рассчитали несколько сотен вариантов структуры будущего энергетического баланса страны. Были найдены принципиальные решения, определившие стратегию развития энергетики страны на грядущие десятилетия. Хотя в основе энергетики ближайшего будущего по-прежнему останется
теплоэнергетика на не возобновляемых ресурсах, структура её изменится. Энергетическая программа страны - основы нашей экономики в канун 21 века. Но ученые заглядывают и вперед, за пределы сроков, установленных К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет,
израсходованы они будут за сотни лет. Сегодня в мире стали всерьёз
задумываться над этим, как не допустить хищнического разграбления земных
богатств. Ведь лишь при этом условии запасов топлива может хватить на века. А пока в мире всё больше учёных и инженеров занимаются поисками новых, нетрадиционных источников, которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Решение этой задачи исследователи ищут на разных направлениях. Самым заманчивым, конечно, является использование вечных, возобновляемых источников энергии-энергии текущей воды и ветра, тепла земных недр, Солнца. Много внимания уделяется развитию атомной энергетике, ученые ищут способы воспроизведения на Земле процессов, протекающих в звездах и снабжающих их колоссальными запасами энергии. Что такое энергия? В нашем индустриальном обществе от энергии зависит всё. С её помощью движутся автомобили, улетают в космос ракеты. С её помощью можно поджарить хлеб, обогреть жилище и привести в действие кондиционеры, осветить улицы, вывести в море корабли. Могут сказать, что энергией являются нефть и природный газ. Однако это не так. Чтобы освободить заключенную в них энергию, их необходимо сжечь, так же как бензин, уголь или дрова. Ученые могут сказать, что энергия-способность к совершению работы, а работа совершается, когда на объект действует физическая сила (такая как давление или гравитация). Согласно формуле[pic], работа равна произведению силы на расстояние, на которое переместился объект. Попросту говоря, работа- энергия в действии. Вы не раз видели, как подпрыгивает крышка закипающего кофейника, как несутся санки по склону горы, как набегающая волна приподнимает плот. Всё это примеры работы, энергии в действии, действующей на предметы. Подпрыгивание крышки кофейника было вызвано давлением пара, возникшем при нагревании жидкости. Санки ехали потому, что существуют гравитационные силы. Энергия волн двигала плот. В нашем работающем мире основой всего является энергия, без неё не будет совершаться работа. Когда энергия имеется в наличие и может быть использована, любой объект будет совершать работу иногда созидательную, иногда разрушительную. Даже музыкальный инструмент-рояль-спосбен совершать работу. Представьте себе, что вдоль внешней стены многоквартирного дома поднимают рояль. Пока люди тянут за веревки, они прилагают силу, заставляющую двигаться рояль. В этом случае работу совершают люди, а не рояль. Он лишь накапливает потенциальную энергию по мере того, как всё выше и выше поднимается над землёй. Когда, наконец, рояль достигает пятого этажа, он сможет висеть на этом уровне до тех пор, пока люди внизу поддерживают его с помощью веревок и блоков. Однако представьте, что веревки обрываются. Немедленно проявится сила гравитации и потенциальная энергия, накопленная роялем, начнёт, высвобождаться. Рояль рухнет вниз. Он расплющит всё, что попадется ему на пути, ударится о тротуар и разобьется вдребезги. Вся ситуация, разумеется, случайна, и, тем не менее, служит примером того, что и рояль может совершать работу. В данном случае-разрушительную, но всё же работу. Мир наполнен энергией, которая может быть использована для совершения работы данного характера. Энергия может, находится в людях и животных, камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах. Энергия солнца: В последние время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всё мире, заставляет нас рассмотреть его возможности отдельно. Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики. Заметим, что использование всего лишь 0.0125% этого количества энергии К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы
удастся реализовать в больших масштабах. Одним из наиболее серьезных
препятствий такой реализации является низкая интенсивность солнечного
излучения. Даже при наилучших атмосферных условиях (южные широты, чистое
небо) плотность потока солнечного излучения составляет не более 250Вт/м. Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счёт солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчётам изготовление коллекторов солнечного излучения площадью 1км, требует примерно 10 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в Из написанного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счёт солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется "собирать" солнечную энергию на площади от 1 10 до 3 10км. В то же время общая площадь пахотных земель в мире составляет 13 10 км. Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечёт за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчёты показывают, что для производства 1 Мвт год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетики на органическом топливе этот показатель составляет 200-500 человеко-часов. Пока ещё электрической энергии, рожденными солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые открыли, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы. Ветровая энергия: Огромная энергия движущихся воздушных масс. Запасы энергия ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветра от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда, дующие на просторах нашей страны, могли бы легко удовлетворить все её потребности и электроэнергии! Климатические условия позволяют развивать ветроэнерготехнику на огромной территории-от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный, да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывает всего одну тысячную мировых потребностей энергии. Техника 20 века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой-получении электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания. В наши дни к созданию конструкций ветроколеса-сердце любой ветроэнергетической установки-привлекаются специалисты самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых инженеров созданы самые разнообразные конструкции современных ветровых установок. Энергия рек: Многие тысячелетия, верно, служит человеку энергия, заключенная в текущей воде. Запасы её на Земле колоссальны. Недаром некоторые ученные считают, что наши планеты правильнее было бы называть не Земля, а Вода-ведь около трёх четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую её часть, поступаю от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских её запасов. Раньше всего люди научились энергию рек. Но когда наступил золотой век электричества, произошло возрождение
водяного колеса, правда, уже в другом обличье – в виде водяной турбины. Можно считать, что современная гидроэнергетика родилась в 1891 году. Преимущества гидроэлектростанций очевидны - постоянно возобновляемый
самой природой запас энергии, простота эксплуатации, отсутствие загрязнения
окружающей среды. Да и опыт постройки и эксплуатации водяных колёс мог бы
оказать не малую помощь гидроэнергетикам. Однако постройка плотины крупной
гидроэлектростанции оказалась задачей куда более сложной, чем постройка
маленькой запруды для вращения мельничного колеса. Чтобы привести во
вращение мощные гидротурбины, нужно накопить за плотиной огромный запас
воды. Для постройки турбины требуется уложить такое количество материалов,
что объем гигантских египетских пирамид по сравнению с ним окажется
ничтожным. Поэтому в начале 20 века было построено несколько
гидроэлектростанций. Вблизи Пятигорска, на Северном Кавказе на горной реке Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных
гидроэлектростанций. В 1926 году в строй вошла Волоховская ГЭС, в следующем Но пока людям служит лишь не большая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы колоссальное количество энергии. Энергия земли: Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно не большого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится - нет пока у людей возможности обуздать не покорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявление энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов. Маленькая европейская страна Исландия - "страна льда" в дословном
переводе - полностью обеспечивает себя помидорами, яблоками и даже
бананами! Многочисленные исландские теплицы получают энергию от тепла земли Но не только для отопления черпают люди энергию из глубин земли. Уже
давно работают электростанции, использующие подземные источники. Первая
такая электростанция, совсем ещё маломощная, была построена в 1904году в
небольшом итальянском городке Лардерелли, который ещё в 1827году составил
проект использования многочисленных в этом районе горячих источников. Атомная энергия: Открытие излучения урана впоследствии стало ключом к энергетическим
кладовым природы. Главным, сразу заинтересовавшим исследователей был
вопрос: откуда берётся энергия лучей, испускаемых ураном, и почему уран
всегда чуточку теплее окружающей среды? Под сомнение ставился либо закон
сохранения энергии, либо утвержденный народом принцип неизменности атомов? Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она, безусловно, будет развиваться и впредь, безотказно поставляю столь необходимую людям энергию. Однако понадобятся дополнительные меры по обеспечению надежности атомных электростанций, их безаварийной работы, а учёные и инженеры сумеют найти необходимые решения. Источники: 1. Володин В., Хазановский П. "Энергия, век двадцать первый". 2. Голдин А. "Океаны энергии". 3. Юдасин Л.С. "Энергетика: проблемы и надежды". |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |