|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Формирование основных понятий вращательного движения в средней школеФормирование основных понятий вращательного движения в средней школеСодержание Вступление 3 Криволинейное движение. Перемещение, скорость и ускорение при криволинейном движении 3 Движение по окружности. Линейная и угловая скорости при равномерном движении по окружности 4 Ускорение при равномерном движении тела (точки) по окружности 5 Заключение 7 Литература 8 Вступление Формирование понятий вращательного движения в средней школе
соответствует изучению раздела криволинейного движения, где учащиеся
получают лишь общие представления о криволинейном движении и более подробно
изучают равномерное движение тела (точки) по окружности. Основными новыми
физическими понятиями, которые рассматриваются в данной теме, являются
угловая и линейная скорости, радиан, центростремительное ускорение. На изучение темы «Криволинейное движение» программой отводится 6 ч. 1. Криволинейное движение. Перемещение, скорость и ускорение при криволинейном движении. 2. Движение по окружности. Угол поворота, радиан. Решение задач. 3. Угловая и линейная скорости при равномерном движении по окружности. Решение задач. 4. Ускорение при равномерном движении тела по окружности. 5. Об относительности движения тела при вращении системы отсчета. 6. Обобщающее повторение. Решение задач. Криволинейное движение. Перемещение, скорость и ускорение при криволинейном движении Из курса физики VI класса учащиеся знают, что движение, траекторией которого является кривая линия, называется криволинейным движением. В VIII классе эти знания дополняются и углубляются. Приводим примеры криволинейного движения (движение тела, брошенного под углом к горизонту; вращение Земли вокруг солнца, движение искусственных спутников вокруг Земли, движение заряда, вылетевшего из орудия и др.) Демонстрируем некоторые опыты: выстрел из баллистического столета, движение шарика на центробежной дороге, изменение направления движения стального шарика под действием магнита. Учащиеся знают, что в случае прямолинейного движения траектория — прямая линия и поэтому положение любой точки траектории определяется одной координатой. В случае криволинейного движения, происходящего на плоскости, изменяются две координаты х и у. После этого выясняем, как изменяется скорость в криволинейном
движении, даем понятие о направлении скорости и перемещения в криволинейном
движении. Важно объяснение этого материала иллюстрировать опытом,
показывающим, что вектор скорости точки направлен по касательной к
траектории движения. Рекомендуем на уроке показать следующую демонстрацию. Рис. 1 На центробежной машине укрепляется вертикально фанерный круг диаметром Эти опыты помогают учащимся сделать вывод: направление скорости криволинейного движения определяется направлением касательной в той точке траектории, в которой находится в данный момент вращения движущаяся материальная точка. Абсолютное значение скорости в криволинейном движении измеряется отношением пути, пройденного материальной точкой за известный промежуток времени, к значению этого промежутка времени. Длина пути в этом случае отсчитывается по дуге, вдоль траектории движения. (Для учителя напомним, что при изучении криволинейного движения точки в механике пользуются понятиями тангенциального и нормального ускорения и полного ускорения.) Так как направление касательной к траектории в разных точках различно, то это означает, что в криволинейном движении в общем случае скорость изменяется по направлению. При изучении криволинейного движения особое значение приобретает мгновенная скорость. Обращаем внимание и на следующий факт. В криволинейном движении вектор скорости не совпадает по направлению с вектором перемещения, а составляет с ним некоторый угол. В прямолинейном же движении направления этих векторов совпадают или противоположны. Движение по окружности. Линейная и угловая скорости при равномерном движении по окружности Любое криволинейное движение можно представить приближенно как движение по дугам некоторых окружностей. Именно поэтому Изучение его представляет значительный интерес. Можно привести много примеров движений тел, траекторией которых является окружность (движение самолета, описывающего «мертвую петлю», людей на карусели, мотоциклов на поворотах дороги и т. д.). При этом следует сделать следующее замечание. Если тело движется "По окружности, то, вообще говоря, различные его точки в одно и то же время проходят различные расстояния. Однако если радиус окружности значительно превосходит размеры тела, то можно описывать его движение как движение одной материальной точки. Движение материальной точки по окружности вполне характеризуется скоростью в каждой точке траектории. При равномерном вращении скорость изменяется только по направлению, а модуль скорости остается постоянным. Однако вычислить мгновенную скорость в каждой точке криволинейной траектории трудно и не всегда удобно. Поэтому для практических целей движение точки по окружности принято характеризовать линейной (окружной) скоростью, которая является скалярной величиной и определяется длиной пути, пройденной точкой окружности за единицу времени. По определению линейная скорость [pic]. Другими величинами, характеризующими движение точки по окружности, являются угол поворота и угловая скорость. При рассмотрении понятий линейной и угловой скорости можно применить самодельный прибор (Рис. 2). Прибор изготовляют из фанеры, устройство его ясно из рисунка. Различие линейной и угловой скоростей демонстрируется так: совмещают неподвижный радиус ОА с подвижным радиусом ОА1, затем медленно и равномерно поворачивают на некоторый угол и показывают криволинейную траекторию движения точки А – дугу АА1 Сообщают, что отношение длины этой дуги > времени и дает линейную скорость точки А. Затем повторяют демонстрацию и обращают внимание учащихся на длину путей точек А, В и С, по- разному удаленных от оси вращения. Делают вывод о разном значении линейных скоростей этих точек. Равномерно вращая диск и обращая внимание на изменение угла поворота подвижного радиуса относительно неподвижного, можно дать понятие об угловой скорости. Медленнее и более быстрое движение диска проиллюстрирует движение с меньшей и большей угловыми скоростями. Наконец, если равномерно вращать диск так, чтобы он поворачивался за 1 с (по метроному) на угол в один радиан, можно дать понятие об единице угловой скорости — 1 рад/с. Рис. 2 Следует обратить внимание на то, что линейная и угловая скорости –
относительные величины. Чтобы показать, что линейная скорость материальной
точки, движущейся по окружности, зависит от выбора системы отсчета, можно
привести пример: «Безостановочная железная дорога» из книги Я. И. Для закрепления знаний формул линейной и угловой можно предложить учащимся и такую задачу: Найти угловую и линейную скорости искусственного спутника Земли,
вращающегося по круговой орбите с периодом вращения Т=88 мин, если
известно, что его орбита расположена на расстоянии 200 км от поверхности Ускорение при равномерном движении тела (точки) по окружности Рис. 3 В школьных учебниках физики для вывода формулы центростремительного
ускорения чаще всего используют способ, основанный на предельном переходе. Пусть за очень малый промежуток времени тело переместилось из точки А
в точку В (см. Рис. 3). Тогда изменение вектора скорости [pic]. Далее находят модуль центростремительного ускорения [pic]. Необходимо обратить внимание учащихся еще на следующий факт. Так как Рис. 4 При изучении движения по окружности нуждаются в конкретизации понятия Заключение Формирование основных понятий вращательного движения, как составной
части криволинейного движения, является довольно трудной для усвоения
темой. Она нуждается во множестве примеров и демонстраций, вполне возможных
для проведения на уроке. Полученные знания будут находить применение в
последующих темах изучения физики. Ученик, свободно оперирующий понятиями
вращательного движения, подготовлен к изучению динамики вращательного
движения. Также знание понятий будет использоваться в теме колебаний. Литература 1. С.У. Гончаренко «Фізика 9» 2. В. П. Орехова, А. В. Усовой «Методика преподавания физики 8-10 кл.» «Просвещение» 1980 г. 3. Я.И. Перельман «Занимательная физика» Кн.2/под ред. А.В. Митрофанова; М. «Наука» 1986 г. |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |