рефераты рефераты
Домой
Домой
рефераты
Поиск
рефераты
Войти
рефераты
Контакты
рефераты Добавить в избранное
рефераты Сделать стартовой
рефераты рефераты рефераты рефераты
рефераты
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты
 
МЕНЮ
рефераты Исследование трехфазного короткозамкнутого асинхронного электродвигателя рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Исследование трехфазного короткозамкнутого асинхронного электродвигателя

Исследование трехфазного короткозамкнутого асинхронного электродвигателя

Министерство образования Российской Федерации

Пермский Государственный Технический Университет

Кафедра электротехники и электромеханики










Лабораторная работа № 6

«Исследование трехфазного короткозамкнутого

асинхронного электродвигателя»



Цель работы: ознакомиться с особенностями устройства трехфазного асинхронного электродвигателя с короткозамкнутым ротором и исследовать основные свойства этого двигателя путем снятия рабочих характеристик.


Табл. 1. Паспортные данные электроизмерительных приборов

п/п

Наименованное

прибора

Заводской

номер

Тип

Система

измерения

Класс

точности

Предел

измерений

Цена деления

1

Вольтметр


М362

МЭ

1.5

250 В

10 В

2

Амперметр


М362

МЭ

1.5

10 А

0.5 А

3

Амперметр


Э30

ЭМ

1.5

5 А

0.2 А

4

Ваттметр


Д539

ЭД

0.5

1500

10

Рабочее задание

1. Ознакомимся с устройством исследуемого асинхронного короткозамкнутого электродви-гателя и нагрузочной машины. Запишем их паспортные данные в табл. 2.


Табл. 2

Тип

UН, В

IН, А

PН, Вт

nН,

об/мин

M,

Нм

ηН

cosφ

Примечание

АОЛ32-4

380

2,4

1000

1410

6,77

78,5

0,79


П22

220

5,9

1000

1500






В этой таблице для асинхронного двигателя указываются номинальные значения тока и линейного напряжения при соединении обмоток в звезду. Номинальный вращающий момент машины вычисляется по формуле .

2. Для исследования асинхронного двигателя собирается электрическая цепь согласно рис. 1.


3. Рабочие характеристики асинхронного двигателя снимаются следующим образом. Зашунтировав амперметр и токовые катушки ваттметров, запускают асинхронный двигатель. Проверяют направление вращения двигателя (оно должно совпадать с указанным на стенде).

Тумблерами отключают все секции сопротивления  и подают постоянное напряжение 230 В на обмотку возбуждения генератора. Убедившись, что ток в якорной цепи генератора равен нулю, записывают показания всех приборов в табл 3. Скорость вращения двигателя измеряется тахометром.

Затем, увеличивая нагрузку на валу двигателя путем включения необходимого числа секций , снимают показания приборов еще 5 – 6 раз. Величину нагрузки можно контролировать по величине тока в якорной цепи генератора. В процессе опыта максимальные значения токов генератора и двигателя не должны превышать .

Табл. 3

I1, А

W, дел.

Uг, В

Iг, А

n, об\мин

Примечание

1

0,9

5

195

0

1486

U1 = 380 В,

Cw = 10 Вт/дел.

2

1,1

13

175

1,5

1436

3

1,38

22

165

2,5

1403

4

1,5

26

155

3,1

1381

5

1,8

33

140

4,0

1337

6

2,1

39

130

4,8

1297

7

2,4

46

115

5,6

1243

8

2,7

50

102

6,8

1206

9

3,0

56

90

7,2

1141


По данным табл. 3 определяются:

мощность, потребляемая двигателем из сети



полезная мощность генератора постоянного тока



мощность, передаваемая от двигателя к генератору (полезная мощность двигателя)



(значения КПД генератора  берутся из графика , который строится на основа-нии табл. 4. При этом номинальная мощность генератора берется из табл. 2)

момент на валу двигателя



где (Вт) и (об/мин)

скольжение


коэффициент мощности двигателя


 

КПД двигателя



Результаты расчетов сводят в табл. 5


Табл. 4

0,2

0,4

0,6

0,8

1,0

1,2

1,4

0,73

0,79

0,8

0,78

0,76

0,72

0,68


Табл. 5

P1, Вт

Pг, Вт

ηг

P2, Вт

s

n, об/мин

M, Нм

cos φ

ηд

Примечание

1

150

0

0

0,0

0,009

1486

0,00

0,253

0,000

n0 = 60f1/p =

= 1500 об/мин

2

390

262,5

0,758

346,3

0,043

1436

2,30

0,539

0,888

3

660

412,5

0,79

522,2

0,065

1403

3,55

0,727

0,791

4

780

480,5

0,796

603,6

0,079

1381

4,17

0,790

0,774

5

990

560

0,8

700,0

0,109

1337

5,00

0,836

0,707

6

1170

624

0,8

780,0

0,135

1297

5,74

0,846

0,667

7

1380

644

0,799

806,0

0,171

1243

6,19

0,874

0,584

8

1500

693,6

0,796

871,4

0,196

1206

6,90

0,844

0,581

9

1680

648

0,799

811,0

0,239

1141

6,79

0,851

0,483



По данным табл. 5 строим графики зависимостей и .

Вывод: с увеличением момента сопротивления на валу АД потребляемая мощность P1 и мощность на валу P2 возрастают, возрастает и сила тока в обмотках статора I1, частота вращения вала n падает, скольжение s соответственно увеличивается.

С увеличением мощности нагрузки КПД АД вначале стремительно возрастает до наибольшего значения в 0,89 при мощности на валу примерно 350 Вт. С дальнейшим увеличением нагрузки КПД начинает уменьшаться. Коэффициент мощности АД cos φ при увеличении нагрузки также поначалу возрастает, достигает наибольшего значения в 0,87 при мощности примерно 800 Вт, а затем начинает падать.


РЕКЛАМА

рефераты НОВОСТИ рефераты
Изменения
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер


рефераты СЧЕТЧИК рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты © 2010 рефераты