рефераты рефераты
Домой
Домой
рефераты
Поиск
рефераты
Войти
рефераты
Контакты
рефераты Добавить в избранное
рефераты Сделать стартовой
рефераты рефераты рефераты рефераты
рефераты
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты
 
МЕНЮ
рефераты Лекции по физике за 3 семестр рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Лекции по физике за 3 семестр

Лекции по физике за 3 семестр

§5. Уравнение Шрёдингера


1. Решение уравнения Шрёдингера для свободной частицы

2. Длина волны Дебройля (де Бройля)

3. Волновые пакеты. Соотношения неопределённостей

4. Расплывание волновых пакетов

5. Стационарные состояния

6. Прохождение частицы через потенциальный барьер. Туннельный эффект

7. Связанные состояния. Частица в ящике


Волновая функция описывает состояние, состояние любого физического объекта как-то эволюционирует во времени, и должно быть уравнение, которое будет описывать изменение со временем волновой функции, а ещё состояние объекта изменяется в зависимости от окружающей среды, значит, должно быть уравнение, описывающее изменение состояния в заданной обстановке. Кстати, в классической механике это что за уравнение? Второй закон Ньютона. Уравнение Шрёдингера должно играть здесь ту роль, которую закон Ньютона в классической механике. Понятно, что, если состояние задаётся такой функцией, прилепить сюда Второй закон Ньютона невозможно – он оперирует координатами, ускорениями, а у нас ничего такого нет. Вот уравнение Шрёдингера (нерелятивистское) играет роль Второго закона Ньютона и выглядит так:



                                 (1)


Функция  – потенциальная энергия частицы в заданном поле сил. Вот, во Втором законе Ньютона окружающая обстановка вводится в уравнение посредством сил, а здесь потенциальная энергия. Могут быть силы и не потенциальные, и тогда это уравнение будет писаться иначе, но мы к этому позднее ещё вернёмся.

Откуда оно взялось? Ну, это интересный вопрос, как Шрёдингер додумался до этого уравнения, но он не имеет отношения к делу. В теории исходные уравнения постулируются, нет никаких классических способов доказать справедливость уравнений, справедливость или несправедливость определяется тем, работает ли математическая теория, построенная на базе этих уравнений.1) Это уравнение подтверждается тем, что теория, построенная на базе этого уравнения работает и даёт правильные предсказания для всех ситуаций, где она применима.

 

1. Решение уравнения Шрёдингера для свободной частицы



Смысл этого уравнения, как и уравнений Максвелла, мы будем усматривать из некоторых конкретных ситуаций. Когда мы переберём все возможные ситуации, тогда мы и осознаем смысл уравнения, другого понятия смысла и быть не может.

Свободная частица – это простейший объект в классической механике и, соответственно, простейший объект в квантовой механике. Что такое свободная частица? Это частица, на которую не действуют никакие силы. Как узнать, действуют или не действуют? Возникает наглядное представление о свободной частице: на всём белом свете есть одна частица и всё, удалили всю вселенную, тут заведомо на неё никто не действует, потому что, просто, больше никого нет. Если свободная частица подчиняется законам классической механики, то в любой инерциальной системе она либо неподвижна, либо движется с постоянной скоростью. Теперь этот объект мы будем рассматривать в рамках этого уравнения. Слова «свободная частица» означают, что .1) Можно положить константу равной нулю, не теряя общности, потому что потенциальная энергия определена с точностью до константы, поэтому мы положим , и уравнение будет иметь вид:


                                        (2)


Это уравнение в частных производных, я его не буду решать, я просто предъявлю решение, и мы убедимся, что это действительно решение. В качестве кандидата на решение выдвигаем вот такую функцию: , это уравнение плоской волны (поскольку там волновые свойства наблюдаются, испытаем в качестве решения плоскую волну). Будем испытывать:

фазу  обозначим буквой u,


, 2)


, а , таким образом, , теперь . 3)


Подставляем то, что мы добыли, в уравнение (мы хотим убедиться, будет ли эта функция решением уравнения (2)): . И мы видим, что, если , то предъявленная функция будет решением.


Значит, функция

                                          (3)


удовлетворяет уравнению Шредингера для свободной частицы, если константы k, ω не любые, взятые с потолка, а связаны таким образом:


.                                                  (4)


Забегая вперёд, дальше будет ясно почему так, а сейчас это будет голословное утверждение: Волновая функция (3) описывает частицу с энергией  и с импульсом . Откуда берётся такая интерпретация пока аргументировать не можем, а пока это условие (4) означает, что ! Это, конечно, симпатичный результат, потому что действительно, так как уравнение (1) не релятивистское, .

Теперь, конечно, хочется взглянуть на волновую функцию на базе тех наших смутных знаний о ней. Мы знаем, что  есть вероятность обнаружить частицу, смотрим, оказывается . Вероятность обнаружить частицу в этом состоянии (с определённой энергией и с определённым импульсом) всюду одинакова. Волновая функция (3) осциллирует, это бегущая волна, вроде есть движение, но функция Ψ не наблюдаема, это математическая функция, за функцией Ψ  не стоит никаких наблюдаемых величин, а наблюдаема , вероятность, вероятность можно измерять: один раз поймали частицу в этом состоянии, другой раз ловим и набираем статистику, оказывается, что мы будем её ловить с одинаковой вероятностью где угодно. Распределение вероятности застывшая картина ( не зависит от t), то есть всё наблюдаемое распределение застывшее. Конечно, одинаковая вероятность найти частицу здесь или в другом угле вселенной неприятна, уж слишком далеко это представление, но надо иметь в виду, что само решение физически не реализуемо: в электродинамике плоская волна обладала бы бесконечной энергией, но решение на самом деле очень полезно.

Математический факт такой, что беря суперпозицию этих функций со всевозможными частотами и волновыми векторами, мы можем получить все решения уравнения Шрёдингера для свободной частицы. Общее решение уравнения Шрёдингера для свободной частицы представляется в виде суперпозиции функций вида (3):

То есть задайте любой вектор , задайте любую константу , запишите функцию (3), ω через вектор  выражается, получится частное решение. Суммируя по всевозможным векторам , и подбирая различные константы , вы можете изобразить любое решение этого уравнения.

Мы написали общее решение уравнения. Вы, конечно, должны были удивиться: функция (3) есть решение волнового уравнения, которое выглядит так:


                                          (5)


В (2)  тоже, но первая производная! Это замечательное обстоятельство – поиск комплексного решения математически приводит к тому, что уравнение (2) удовлетворяется уравнением волны, хотя, его штатная роль – быть решением уравнения (5).



2. Длина волны Дебройля (де Бройля)1)


Мы сейчас можем понять тот эксперимент с частицами, который наблюдали в прошлый раз. Пусть у нас имеется пучок частиц с определённым импульсом, такой пучок частиц описывается функцией (3) это плоская волна, значит, мы устроим пучок частиц с определённым импульсом, частица с определённым импульсом описывается волновой функцией. Эта волна падает на экран со щелями, дальше из этих щелей выходит сферическая волна, и на экране эти волны интерферируют. Если из верхней щели идёт волна , а из нижней , то в точке A мы будем иметь: .



Что такое ? Это вероятность обнаружить частицу в точке A, если бы не было второй щели. Мы видели, что ожидаемый результат от наложения этих интенсивностей , а эти два слагаемых  и  дают интерференцию.

Какой длиной волны характеризуются эти функции? Число  у нас связано с импульсом частицы: , . Длина волны


                                                            (6)


называется длиной волны Дебройля.


Дебройль ещё до всей этой науки выдвинул гипотезу о том, что частице надо приписывать волновые свойства, которые характеризуются вот такой длиной волны. Наводящие соображения – это поведение фотонов (фотоны к тому времени были известны): импульс фотона равняется , и , то есть для фотонов это само собой справедливо. При прохождении частиц через отверстия наблюдается интерференция, длина волны, которая характеризует такую интерференцию, определяется по расстояниям между максимумами и минимумами, и эта длина волны действительно связана с импульсом частиц.

  определяет вероятность обнаружить частицу, а сама функция  тогда называется амплитудой вероятности. Если частице приписываются волновые свойства с длиной волны , то спрашивается, это волна чего? Волна просто так не бывает: звуковая волна – это идёт волна давления, электромагнитная волна – это волна возмущения электромагнитного поля, волна, приписываемая частице, это волна амплитуды вероятности. Функция Ψ имеет волновой вид, и надо помнить, что сама по себе амплитуда вероятности не наблюдается, то есть нет способа измерить саму функцию Ψ, наблюдаемой величиной является именно вероятность.

Амплитуда не наблюдаема, фаза наблюдаема, и именно фаза определяет интерференционнный результат. Если частицы проходят через две щели и мы не можем сказать, через какую щель проходят частицы, то в точке A складываются амплитуды, если мы здесь поставим микроскопы, то в точке A складываются вероятности. Это правило вводит в рамки теории тот удивительный факт, что, когда мы ставим микроскопы, то нарушается интерференционная картина. Даже можно понять, почему нарушается. Когда мы пытаемся пронаблюдать частицу в щели, а наблюдение это всегда проявляется во взаимодействии,1) надо по крайней мере идти с фонарём, чтобы её осветить, при чём осветить светом с достаточно малой длиной волны.2) Если мы хотим её фиксировать в пределах щели, то длина волны должна быть не больше, чем ширина щели. Это означает, что частота должна быть достаточно велика, а это означает, что импульс фотона достаточно большой (по крайней мере, один фотон должен рассеяться на частице и попасть нам в глаз через микроскоп), и когда этот фотон взаимодействует с частицей, то он, конечно, меняет её состояние. А к чему это приводит с точки зрения волновой картины? Когда мы электрон наблюдаем, то взаимодействие приводит к тому, что фаза волны в этой точке хаотически меняется и волны, идущие от этих щелей, перестают быть когерентными, а когда они перестают быть когерентными, то интерференционные члены дают в среднем ноль. Вот как решается эта задача со щелями.

Ну, и, наконец, последний вопрос – являются ли волновые свойства свойствами какого-то специального сорта частиц (электронов или частиц атомных масштабов)? Ответ – нет, волновые свойства присущи всем частицам. Почему же тогда классическая механика существует и мы никогда не наблюдали интерференционные явления, связанные с пулями или падающими камнями? Ответ – длина волны очень мала: , импульс макроскопических объектов – величина порядка единицы, значит, длина волны для классических объектов – величина порядка 10-34м: . Наблюдать интерференционные явления с такой длиной волны невозможно (размер атома водорода 10-10)! Значит, волновые свойства присущи всем частицам, просто для макроскопических частиц они не наблюдаемы (по той же причине, по какой волновые свойства света не очень наблюдаемы на бытовом уровне).




3. Волновые пакеты. Соотношения неопределённостей




Монохроматическая волна – такая синусоида бесконечной длины – это, конечно, чистая абстракция. Нигде никогда таких волн не бывает. Реальная волна это такая вещь: 1)


Беря суперпозицию синусоидальных волн, мало отличающихся друг от друга по частотам , можно построить, так называемый, волновой пакет, то есть пакет с определённой длиной волны Δx и определённой длительностью Δt.2) Значит, можно получить такое решение [уравнения Шрёдингера], которое называется волновым пакетом. Он ограничен в пространстве и во времени.


Синусоидальная волна имеет скорость, называемую фазовой, . Волновой пакет строится из набора волн с частотами в интервале  и волновыми числами . Скорость электромагнитной волны в вакууме не зависит от частоты, но, если есть дисперсия, скорость зависит от частоты. В диспергирующей среде волновой пакет расплывается, поскольку скорости его монохроматических составляющих отличаются друг от друга, весь пакет идёт с групповой скоростью



в окрестности центрального волнового числа k0.1)


У нас для волн, представляющих амплитуды вероятностей есть дисперсия.



И здесь мы снова подбираемся к представлению, почему возможна классическая механика. Если мы имеем решение в виде волнового пакета, это означает, что частица находится где-то в пределах волнового пакета, снаружи вероятность равна нулю, и этот волновой пакет движется с групповой скоростью . Но это и есть классическая скорость частицы! Значит, пуля, обычная пуля, она просто характеризуется очень узким компактным волновым пакетом. В его пределах сидит центр масс пули, и этот пакет много меньше фактических размеров пули, и поэтому она и выглядит как локализованный объект. Но для электрона этот волновой пакет уже даёт большую неопределённость.


6


Мы видели, что решением уравнения Шрёдингера для свободной частицы является функция , она описывает состояние частицы с импульсом  и энергией , при этом , это означает, что вероятность обнаружить частицу в любой точке пространства одинакова.

Строго монохроматическая волна – это состояние экзотическое. Таких волн в природе нет. Дальше математический факт: общее решение уравнения Шрёдингера для свободной частицы может быть получено суперпозицией таких решений. Из теории рядов Фурье известно, что, беря суперпозицию таких синусоидальных функций, можно построить функцию отличную от нуля лишь в ограниченной области пространства и равную нулю во всём остальном пространстве, так называемый волновой пакет.

Пусть вдоль оси x идёт такой пакет пространственной протяжённости Δx и ограниченный во времени. Если частица находится в состоянии такой волновой функции (вероятность обнаружения частицы отлична от нуля где-то только в пределах этого пакета), то мы видели, что этот пакет движется с групповой скоростью .

Факт математический: если мы хотим построить функцию отличную от нуля в интервале Δx, то мы должны суммировать экспоненты с различными числами k, но отношение  должно быть порядка единицы: ~1. Если мы слепили этот пакет из функций с различными числами k, то это означает, что там присутствуют различные импульсы (каждому k соответствует свой импульс), значит в состоянии, которое представляется волновым пакетом, импульс не имеет определённого значения, и выполняются такие соотношения:


                                                  (7)


Интерпретация такая: Δx – неопределённость в x-ой координате,  – неопределённость в x-ой составляющей импульса.  Утверждается, что эти неопределённости связаны, то есть нельзя одновременно сделать их сколь угодно малыми, как бы мы не изготовляли состояния, мы никогда не добьёмся того, что неопределённости в координатах и импульсе будут сколь угодно малыми. Мы, например, можем изготовлять состояния с всё более точными значениями импульса, тогда значения координат будут делаться всё более неопределёнными. Это называется соотношения неопределённости.

Эти соотношения, так сказать, фирменный знак квантовой механики, вот, формула  – это фирменный знак теории относительности, а это – квантовой механики. В этих соотношениях увязаны корпускулярные и волновые свойства. Если бы частицы вели себя так, как им предписано в классической механике, то это были бы объекты, которые имеют точное значение координат и точное значение импульса, волна не может иметь точного значения координат, волна размазана в пространстве всегда, и, значит, эти свойства частиц стыкуются более-менее вот в этих соотношениях. То есть в соотношениях (7) в концентрированном виде выражается всё это необыкновенное поведение частиц в атомных масштабах.


4. Расплывание волновых пакетов



Предположим, что мы создали такое состояние частицы, когда она локализована в ограниченной области пространства, то есть соорудили в начальный момент времени волновой пакет, длина которого Δx0 (мы знаем, что частица где-то здесь в окрестности какого-то значения x). Фазовая скорость волн, из которых построен пакет равна , и, поскольку имеет место такое соотношение , мы видим, что фазовая скорость зависит от k, то есть каждая синусоида, составляющая пакет, движется со своей скоростью. К чему это приведёт? Каждая синусоида начинает сдвигаться относительно другой, между ними меняются фазовые соотношения и этот пакет начинает растягиваться.1) Можно оценить это расплывание.

Разброс в импульсе , этому разбросу в импульсе соответствует разброс в скоростях , где m – масса частицы, а этому разбросу скоростей будет соответствовать увеличение расстояния , то есть, если в начальный момент времени волновой пакет имел длину Δx0, то к моменту времени t он будет иметь такую длину.2)


Там, где существенны волновые свойства, там рушится понятие траектории. Мне был приведён контрпример – наблюдаются траектории в камере Вильсона. Действительно, в камере Вильсона электроны оставляют следы, как это со всем сообразуется? Сообразуется следующим образом.

Во-первых, как получается след в камере Вильсона? В чистом небе высоко где-то летит самолёт, которого почти не видно, и за ним тянется ровный белый след – рисуется его траектория. Тот же механизм и в камере Вильсона. Там на этих высотах чистая атмосфера и водяной пар, переохлаждённый водяной пар (на высоте 10000м температура порядка –40оС). Водяной пар при таких температурах должен был бы конденсироваться, но для конденсации нужны конденсаты.1) Летит самолёт, выбрасываются частицы (сгорает топливо в двигателе), они становятся центрами конденсации и на них высаживаются капли воды, и мы получаем такую белую полосу. Камера Вильсона действует таким же образом. Под поршнем, скажем, пар, и внезапно поршень выдвигают, начинается адиабатическое охлаждение. Пар переводится в состояние охлаждённого пара, в этот момент залетает частица, она производит ионизацию атомов в воздухе, эти ионизированные атомы делаются конденсатами, на них высаживаются капли воды, мы получаем видимый след. А теперь, как это связано с теорией?

Вот у вас летит электрон это волновой пакет. Я рисую гребни волн. В точке 1 произошла ионизация, и мы получили здесь каплю воды. Волновая функция скукожилась сразу в окрестности этой точки, но этот пакет обладает импульсом, он продолжает двигаться в том же направлении, эта волновая функция снова расплывается. Следующая конденсация произошла в точке 2, и так далее. На самом деле, толщина этого следа по атомным масштабам очень велика. Действительно, каждая капля, которая образуется (это измерение координаты электрона), ложится хаотично в пространстве, но все капли укладываются в след, толщина которого много больше длины волны. Они хаотически обнаруживаются в разных точках в пределах волнового пакета, ну а для нас это выглядит как такая траектория. Если бы мы были сами атомных масштабов и сидели там внутри, то мы видели бы, что он тут вспыхнул, потом он там вспыхнул, и никакой траектории мы тогда б не увидели. Таким образом вся эта картина увязывается со следами в камере Вильсона.


5. Стационарные состояния


Мы нашли одно специальное решение в виде плоской волны, сейчас мы найдём ещё один класс специальных решений для уравнения Шрёдингера



Положим , математик говорит «будем искать решение в таком виде». Каков смысл этого решения?


Волновая функция это функция координат и времени, мы хотим найти функции такого типа, чтоб были разделены временная и пространственная переменные.1)

Пока чисто математическая проблема.



При подстановке мы получаем уравнение: . Отсюда дальше . Слева у нас стоит функция от времени, а справа стоит функция от координат, и вот это равенство, что некоторая функция от времени при любых значениях t равна некоторой функции от координат при любых значениях координат. Как это может быть? Только так, что обе эти функции константы. Это означает, что мы имеем два уравнения  и в то же самое время.

Сразу получаем, что , а функция  удовлетворяет такому уравнению


.                       (8)


И мораль такая: волновая функция Ψ вида


                                      (9)


удовлетворяет уравнению Шрёдингера, где функция  удовлетворяет уравнению (8), которое называется уравнением Шрёдингера для стационарных состояний.


Это математический факт, какая физика за этим стоит? А физика такая – функция вида (9) описывает стационарное состояние частицы с энергией E. Стационарное означает, вообще-то, независящее от времени, а почему оно не зависит от времени, когда в (9) время явно сидит? Ещё раз напомню, сама волновая функция не имеет физического смысла, но физический смысл имеет квадрат её модуля, а  и от времени не зависит.

Функция  даёт распределение вероятностей обнаружить частицу в той или иной точке пространства, то есть она даёт пространственную конфигурацию этого состояния, и оно не зависит от времени. Мы имеем застывшую картину, а энергия этого состояния вполне определённая. Значит, есть энергия, но нет кинематики. Мы увидим дальше, что, например, электрон в атоме может находиться в стационарных состояниях с определённой энергией, а что касается пространственной зависимости вероятности обнаружить его в той или иной точке, то это застывшая картина. И, кстати, из этого мы можем понять, как будет решена проблема, которая возникает при применении классической механики к атому.


Как только обнаружилось, что в атоме есть ядро, то сразу родилась планетарная модель атома: положительное ядро и электроны, вращающиеся по орбитам, как планеты вокруг солнца. В эту модель сразу занеслось противоречие, потому что электроны, вращающиеся вокруг ядра, должны излучать электромагнитные волны за счёт своей энергии, – он очень быстро должен был бы свалиться на ядро.1) Мы сейчас видим, какова будет разгадка этой загадки.

Если электрон в атоме находится в стационарном состоянии, которое описывается функцией (9), то это застывшая картина, нет никакого движения заряда,  со временем не меняется – нет излучения.

Вот таким образом решается проблема с электроном в атоме. Я ещё раз говорю, что этот образ электронов, вращающихся, как планеты вокруг солнца, вокруг ядра, который в классической физике присутствует, не имеет отношения к действительности.


Кстати, волновая функция  описывает стационарное состояние (волновая функция для свободной частицы это частный случай стационарного состояния). Для плоской волны есть импульс, импульс это динамическая характеристика, а кинематики, то есть чего-то такого движущегося, нет, потому что вероятность всюду одинакова. Вот, когда мы возьмём волновой пакет, мы получим кинематику, но зато потеряем определённость в импульсе.


6. Прохождение частицы через потенциальный барьер. Туннельный эффект



Мы нашли одно частное решение для свободной частицы, когда не было потенциальной энергии, рассмотрим сейчас задачу чуть более сложную. Пусть потенциальная энергия имеет вид   (рис.6.1, а).

Физика такая: в области x<0 сила, действующая на частицу, ноль, при x>0 сила, действующая на частицу тоже ноль (потенциальная энергия постоянна), но зато в окрестности нуля действует сила . График силы изображён на рисунке 6.1, б. Для такой ступеньки производная бесконечно велика, это означает, что в окрестности нуля действует бесконечно большая сила, направленная влево, но, хотя сила бесконечно большая, работа против этой силы тем не менее конечна.

Наглядно: вот стоит абсолютно твёрдая стенка, абсолютная твёрдость означает, что при столкновении со стенкой отбрасывающая сила бесконечно велика, но тем не менее стенка пробиваема: если налетающая частица имеет кинетическую энергию больше некоторой, то она эту стенку пробивает. Работа по преодолению этой силы тем не менее конечна. Это будет изображаться таким потенциальным барьером.

Реально это можно реализовать для электронов. Имеем две металлические стенки, к этим стенкам приложена разность потенциалов. Электрон попадает в область электрического поля между стенками и испытывает силу, выталкивающую его обратно. Теперь, выдерживая постоянное напряжение, будем сближать эти стенки. Напряжённость электрического поля стремится к бесконечности, но работа по пробиванию этого конденсатора остаётся конечной. Этот барьер для электронов будет реализован вот таким образом.

А теперь мы будем рассматривать стационарное состояние. Высота барьера U0, пишем уравнение Шрёдингера для стационарных состояний:



Как нам затолкать эту разрывную функцию U(x) туда? А просто мы сейчас разделим всё пространство на две части, напишем это уравнение для области x<0 и потом напишем это уравнение для области x>0, найдём эти решения, а потом их будем сшивать в точке x0=0, чтоб получить одну функцию (волновая функция должна быть непрерывной).


                                                               (8.1)


                                                   (8.2)


Решение уравнения (8.1) пишем немедленно (это уравнение колебаний):


. Это решение в области x<0.      

Уравнение в области  в случае E>U0 имеет решение такое же как при x<0, а если , то это уравнение другого типа, оно имеет другое решение.


Мы рассматриваем первый случай, когда энергия частицы больше, чем напряжение в цепи:  и E>U0.



Эти решения надо состыковать. Функция должна быть это непрерывной:


                                                                                      (8.3)


На волновую функцию накладывается ещё одно требование – непрерывность первой производной (физическую основу этих требований мы ещё увидим):

                                                                                   (8.4)


У нас четыре константы, а мы имеем два уравнения. Математик, конечно, озадачился бы, но мы должны интерпретировать результат. Прежде всего смотрим на функцию u1:  это волна, бегущая вправо вдоль оси x, она описывает налетающие частицы,  это волна, бегущая влево вдоль оси x в области x<0, это волна может быть отразившейся, мы пока оставим это дело. Константа C1 описывает падающую волну, она соответствует амплитуде падающей волны, то есть, в конечном счёте, интенсивности налетающего пучка, значит, C1 заданная константа, C2 подлежит определению. Смотрим на решение u2 в области :  это волна, идущая вправо, она описывает пучок, прошедший через барьер,  это волна, идущая влево, физически ей неоткуда взяться, поэтому полагаем C4=0. Теперь мы имеем константу C1 (задаём сами), а C2 и C3 должны определить. У нас есть два условия, напишем эти условия: формула (8.3) в нуле даёт C1+ C2= C3, формула (8.4) даёт . Мы получим:


        и         


Мы видим, что , это означает, что есть отражённая волна. Квадрат модуля функции даёт плотность вероятности (вероятность найти частицу в этой точке), она пропорциональна количеству частиц.

Вот электроны, летящие с кинетической энергией, входят в область электрического поля, которое оказывает тормозящую силу, но их энергия больше, чем работа по преодолению этого поля. По классическим понятиям все электроны проходят этот конденсатор и дальше идут с меньшей энергией, здесь мы получаем, что существует отличная от нуля вероятность (тем больше, чем больше C2), что электрон отразится от этого поля и полетит обратно, при чём с той же энергией, с которой он летел. Чтобы драматизировать пример: ставим абсолютно твёрдое, но непробиваемое стекло, и вы стреляете в него из пулемёта. Нормальные пули стекло пробивают, но по правилам игры, которые мы тут обнаруживаем, есть отличная от нуля вероятность, что пуля отразится всё-таки от стекла и попадёт стрелку в лоб.



7


Мы рассматривали прохождение частицы через потенциальный барьер. Мы нашли решение для этой ситуации в случае, когда x<0 и когда  и E>U0. Мы нашли, что он проходит барьер, но существует отличная от нуля вероятность, что он тем не менее отразится обратно, потому что в решении появилась отражённая волна.

А теперь второй случай:  и .1)

Уравнение (8.2) нам даёт: , где . Раньше это было уравнение колебаний, имели решение в виде мнимых экспонент, а здесь будет решение в виде действительных экспонент (уравнения такого типа всегда удовлетворяются экспонентами):



Слева от барьера было решение . Опять мы должны получить функцию, заданную на всей оси x,2) мы снова должны сшить эти функции в точке x0=0.

Опять имеем четыре константы, и условия для сшивки (8.3) и (8.4). Константу C1 мы считаем заданной (это мера интенсивности налетающего пучка),  это отражённая волна, C2 подлежит определению. В решении в правой части  мы выкинем сразу, потому что функция  экспоненциально нарастает, а это недопустимо для волновой функции (она интерпретируется как плотность вероятности): ,  подлежит определению. Условие (8.3) даёт: , (8.4): , и получим, что


         и        


Видно, что , интенсивность отражённого пучка такая же как интенсивность падающего. Это означает, что весь пучок, действительно, отразится назад, но, тем не менее, волновая функция в области  будет отлична от нуля: .

То есть вероятность обнаружить частицу в классически запрещённой области отлична от нуля, – она экспоненциально затухает, но, все-таки, частица внедряется в эту запрещённую область. Частица уходит назад (интенсивность отражённого пучка такая же как интенсивность падающего, всё, что упало, всё отразилось), но то, что волновая функция не сразу обращается в ноль, физически проявляется в эффекте очень неожиданном на первый взгляд.




Туннельный эффект


Не будем решать эту задачу, она решается, но, просто, алгебра здесь длинная. Рассмотрим барьер конечной ширины – вот такую потенциальную энергию U(x) (рис.6.6, а).


Физически как реализовать эту ситуацию? Для электрона, поставив два конденсатора (рис.6.5). С точки зрения здравого смысла и классической механики что будет? Электрон летит, если его энергии достаточно, чтобы пробить конденсатор, то он через него пройдёт, долетит до следующего конденсатора, ускорится,  вылетит и будет двигаться дальше с той же скоростью, с которой он подлетал. Если же у него энергии недостаточно, чтобы пробить первый конденсатор, то он сюда забурился, остановился, и его выбросило обратно, и он улетел, а что там дальше подставлять (человека поставить флажком махать или ещё что-нибудь) ему всё равно, он туда не долетает.


А вот в квантовой механике будет иначе. Качественно ситуация выглядит так.

За барьером мы получаем волну с той же длиной. Качественно довольно очевидно, ну а формально можно получить всё это, только в два раза больше сил потребуется, чем для ступеньки, поскольку больше граничных условий.

Это означает, что, если энергия частицы меньше высоты барьера, то существует тем не менее отличная от нуля вероятность, что она пролетит, то есть, когда вы ставите для электрона конденсатор с тормозящим полем, через него электрон заведомо не проходит, но если вы дальше поставите конденсатор с ускоряющим полем, то он пройдёт. Чем дальше будет второй конденсатор, тем больше ширина потенциального барьера, тем меньше вероятность.


Конечно, ситуация удивительная, чтобы её перевести на житейский язык, так скажем. Человек не прыгнет на 3м, чемпионы сейчас на 2.30 прыгают, но на 3м не прыгнут, даже я берусь спорить, что никогда не прыгнут.1) Теперь в чистом поле роем яму глубиной 3м и туда человека скинули. Он там может прыгать, но из ямы не выскочит. Другая ситуация: на ровном месте окружаем его стеной высотой 3м (барьер конечной ширины), тогда, если он будет прыгать достаточно долго и упорно, окажется, что он из ямы не выпрыгнет (ступенька потенциальная), а стену может преодолеть. Можно сказать, что нет вероятности выскочить из ямы глубиной 3м, но есть отличая от нуля вероятность перепрыгнуть трёхметровую стену.2)

Конечно, на макроскопическом уровне это (преодоление трёхметровой стены) выглядит как чудо, а в атомных масштабах это заурядная вещь. Вот использование электричества в быту связано радикальным образом с туннельным эффектом: всякий проводник покрыт тонкой непроводящей плёнкой, когда два проводника они разделены непроводящей плёнкой, электроны преодолевают эту плёнку за счёт туннельного эффекта.3) Вот так всё на благо человечества устроено.

Ещё один пример. Мы обсуждали фотоэффект. Электрон в металле сидит в потенциальной яме, и он не выскакивает, потому что имеет перед собой потенциальную ступеньку. А если мы за металлом убавим потенциальную энергию как на рис.6.7, а это можно сделать (см. рис.6.8), электрон в металле этого поля не чувствует, но он имеет перед собой барьер конечной ширины, а это означает, что имеется отличная от нуля вероятность, что он выскочит из металла. Это известный эффект, он называется эффектом В. Шотки, – если вы к куску металла приложите электрическое поле (оно всегда перпендикулярно к эквипотенциальной поверхности металла) такое, что для выскочившего электрона оно будет ускоряющим, то электроны начнут вылетать из металла.


7. Связанные состояния. Частица в ящике


Если частица локализована в ограниченной области пространства, то говорят, что она находится в связанном состоянии.1) Например, две частицы внутри вот этого куска мела находятся в связанном состоянии (они заперты в объёме этого куска), электроны в атоме так же находятся в связанном состоянии. Почему эти состояния важны? А вот потому, что энергия частицы в связанном состоянии может принимать лишь определённые значения 2) (энергия квантуется). Это очень существенное свойство, не имеющее, кстати, классического аналога. Земля вращается вокруг Солнца – строго говоря, её энергия квантуется, просто уровни энергии не заметны, в атомных масштабах заметны. По классическим представлениям энергия системы это определённое число, оно сохраняется, чем это число определяется? Начальными условиями, тем, как возникла эта система. Оно может быть любым, скажем, энергия могла быть чуть больше, чем она есть, чуть меньше, в классической механике это дело не регламентируется никак, всё определяется начальными условиями. А вот электрон в атоме может иметь какое-то значение En, которое можно заранее предсказать, и никаких других значений быть не может.3) Формально это проявляется так: уравнение Шрёдингера для стационарных связанных состояний имеет разумные решения лишь при определённых значениях E. Это факт математический, а его физическая интерпретация такая, что только эти значения энергии E могут наблюдаться. Мы сейчас убедимся на простом примере.





Частица в ящике


Мы сейчас смоделируем самое простое связанное состояние. Какое можно придумать самое простое связанное состояние? А вот такое – имеем ящик с абсолютно непробиваемыми стенками, с дверцей. Кинули туда частицу и дверцу захлопнули.1) Как это дело задать теперь математически? Потенциальная энергия в ящике равна нулю, вне ящика потенциальная энергия бесконечно велика, именно это и означает, что стенки ящика абсолютно непробиваемы (самый радикальный вариант связанного состояния). Дальше математика.  

Мы рассматриваем стационарное состояние, волновая функция  имеет вид: , а для функции  (пространственная часть волновой функции) должно выполняться уравнение . В уравнение окружающая обстановка заводится посредством потенциальной энергии. Наша потенциальная энергия задана таким условием:


.


            Из того, что стенки ящика абсолютно непробиваемы следует, что частица вне ящика не может находиться, мы тогда пишем сразу  вне ящика. А внутри ящика мы получим такое уравнение:


, где .


Это уравнение в частных производных. Будем искать решение в виде


,


то есть пытаемся разделить переменные.


Тогда


  

,  

 

подставим это в уравнение:



Теперь делим всё это дело на XYZ, получаем тогда уравнение такое:


.


Первое слагаемое зависит только от x, а второе только от y, а третье только от z, и утверждается, что в сумме они равны константе. Тогда всё это дело разбивается на такие уравнения:



А это уже знакомые уравнения и мы немедленно находим решения:



Это решение в ящике, мы должны получить решение для всёго пространства, чтобы оно было непрерывным. Это означает, что волновая функция в ящике должна быть устроена так, чтобы она на стенках ящика занулялась. Это условие накладывает такие ограничения:



Займёмся иксом:  даёт B1=0, то есть константу B1 мы выкинем сразу,  даёт , это означает, что , nx=1, 2, 3… (значения A1=0  и nx=0 брать нельзя, потому что тогда мы убиваем всё решение). Таким образом, мы получаем такое условие: , поскольку для остальных функций мы имеем то же самое, то  и . Для всей функции u мы получаем множество решений такого вида:



                           (10)



При этом .


И окончательно результат такой: состояние частицы в ящике задаётся тремя целыми числами, которым соответствует функция (10), и этому состоянию соответствует энергия , где a, b, c это рёбра ящика. Вот что такое квантование, имеем дискретные состояния (тройка чисел задаёт волновую функцию определённой конфигурации) и этим состояниям соответствует энергия. Важно, что нет никаких промежуточных состояний, переходных форм нет. Состояние (1,1,1) называется основным, оно имеет минимальную энергию, а максимальная вероятность найти частицу в ящике [для этого состояния] – в середине, то есть вот частица большую часть времени проводит в середине ящика вместо того, чтобы бегать от стенки к стенке.


8


Продолжаем ту же тему. Если ящик кубический, то формулка для энергии делается симпатичнее:


Возможны различные состояния, которым отвечает одна и та же энергия. Состояниям (2,1,1), (1,2,1), (1,1,2) отвечают различные волновые функции, то есть вероятности обнаружения частицы в точках ящика разные в этих состояниях, но понятно, что им отвечает одна и та же энергия. Уровень энергии, которому отвечают несколько различных состояний, называется вырожденным, в частности, уровень, отвечающий этим трём состояниям, называется трёхкратно вырожденным.




1) Почему мы считаем, что уравнения Максвелла справедливы? Потому что работает теория: радиоприёмники говорят, телевизоры картинку показывают, и, вообще, всё, что называется электричеством, железно из этих уравнений следует.

1) В чём состоит функционирование физика? Он должен уметь слова обычного языка переводить в какие-то математические формулы, вот и всё. Допустим, человек обычным языком описывает проблему, а специалист должен будет потом, зная законы природы, сказать, что будет. Так вот, специалист должен будет перевести эту, может быть, и несвязанную речь на язык математики. На этом функция физика кончается, потому что, как только он перевёл, он может пойти к знакомому математику и дать ему математическую проблему и сказать, вот решай. Математик его не будет спрашивать, что такое буква Ψ, буква t, математику важно знать, что это некоторая функция от переменных x, y, z, ему не надо знать, что эти переменные представляют. Математик это всё продолбит и даст решение, не понимая, что всё это означает. Дальше, опять физик может это проинтерпретировать. Значит, физик работает только на стадии перевода. Но такого разделения труда между физиками и математиками нет, и физикам всегда приходится работать по совместительству математиками, более того, математика в XVIII, XIX веке развивалась в основном физиками, потому что проблемы брались из физики. Вклад чистых математиков в эту науку оказался удивительным, и при случае, если не забуду, я об этом поговорю.

2) Чем замечательны экспоненты – их дифференцировать приятно.

3) Есть рецепт дивергенции от произведения скалярной функции на вектор: , так как .

1) Луи де Бройль, кстати, недавно умер, хотя это придумал в 20-х годах. Он из королевской семьи, это один из последних Бурбонов.

1) В классической физике тоже понималось, что, когда мы наблюдаем объект, то мы с ним взаимодействуем: надо объект осветить и смотреть, по крайней мере, отражённый свет. Но в классической физике считалось, что это взаимодействие можно сделать настолько малым, что оно не меняет состояния объекта, но это оказалось большим заблуждением: в области атомных масштабов наблюдение нельзя сделать таким, чтобы оно не меняло состояния объекта. Наблюдение само по себе это вовсе не невинное дело: когда мы взаимодействуем с объектом в атомных масштабах, его состояние меняется.

2) Мы обсуждали в своё время разрешающую способность оптических инструментов, к сожалению, на экзамене я убедился, что многие эту вещь проигнорировали. Совершенно дифракционное явление: в микроскоп мы можем разрешить две близкие точки, то есть воспринять их как две различные точки, если расстояние между ними не меньше длины волны. Длина волны света, который используется в микроскопе, определяет разрешающую способность.

1) Любая реальная волна, согласно теореме Фурье, может быть представлена как суперпозиция монохроматических волн с различными амплитудами и частотами ω в некотором интервале Δω. Суперпозицию волн, мало отличающихся друг от друга по частотам , называют волновым пакетом или группой волн. //И.Е. Иродов. Волновые процессы. М.1999. стр. 223.

2) Простейший наглядный пример – звуковая волна. Кто-нибудь издаст сейчас кратковременный вопль, и побежит звуковая волна длиной , где τ – длительность вопля. Кстати, если длительность вопля полсекунды, то длина этого пакета будет 150м. И побежит такое возмущение длиной 150м, оно, конечно, не монохроматическое, там уже появится целый спектр частот, и чем кратковременнее вопль, тем больший набор частот требуется для этого.

1) Поясним эту формулу на примере суперпозиции двух волн с одинаковой амплитудой и несколько отличными друг от друга длинами волн (и частотами). На рис.3.2, а показано их относительное расположение в некоторый момент времени, а на рис.3.2, б – результат их суперпозиции. Нас будет интересовать скорость, с которой перемещается место с максимальной амплитудой – это и будет скорость волнового пакета – групповая скорость.


//И.Е. Иродов. Волновые процессы. М.1999. стр.224.

1) Наглядный пример. Приходилось, наверное, наблюдать забеги на длинные дистанции. Вот группа бегунов стартует, эта компактная куча начинает бежать. Отдельный бегун – это отдельная синусоидальная составляющая. Потом, поскольку бегуны все разные, бегут с разными скоростями, это начинает размазываться: сначала бегут компактной группой, потом эта группа разбивается, потом, вообще, оказывается, один на круг отстаёт, и всё начинает путаться. Вот расплывание пакета.

2) Теперь понятно, почему существует классическая механика, почему она оказалась правильной. Например, масса пули m=10-2, допустим центр масс пули был локализован в интервале Δx0=10-5м. На сколько увеличится неопределённость в координате пули за какое-то время? Δx~10-27t. За сутки полёта пули (t=10-5) мы получим Δx~10-22. 10-10 – размер атома водорода. Потому-то пули и летают как компактные объекты, потому что у них масса достаточная, потому и справедлива классическая механика. Если мы в формулу подставим массу электрона me~10-30, то мы видим, что для электрона волновой пакет мгновенно расплывается, и его координата сразу теряется через относительно короткое время.

1) Можно жидкость, например, нагреть в обычных условиях до температуры выше 100о, и она не будит кипеть, если греть очень чистую жидкость без всяких примесей, греть осторожно. Кстати, если потом эту кастрюлю с такой жидкостью немножко тряхнуть, она взрывается, она мгновенно испаряется. Точно так же можно аккуратно охлаждать водяной пар в чистом воздухе до состояния с температурами ниже той, при которой он должен был бы сконденсироваться и превратиться в воду и даже в лёд.

1) Понятно, что вовсе не всякая функция представляется в таком виде, скажем, не всякая функция f(x, y) представляется в виде g(x)h(y), поэтому, если мы найдём такие решения, то это будут какие-то специальные решения.

1) Немедленно вопрос может возникнуть, почему планеты вращаются вокруг Солнца? Мы детально не обсуждали, как выглядит настоящая полевая теория для гравитационного поля, но, когда Земля вращается вокруг Солнца, то поле должно меняться синхронно, а поскольку синхронно меняться не может, то должны излучаться гравитационные волны. Почему тогда Земля не падает на Солнце? Ответ простой – мощность мала. Волны излучается, энергия уносится, но гравитационное взаимодействие примерно на 40 порядков слабее электромагнитного, это самое слабое взаимодействие. Энергия уносимая волнами просто очень мала, и, скажем, Земля за 4 млрд. лет, сколько она существует, сделала 4 млрд. оборотов, но приблизилась к Солнцу ничтожно мало.

1) Если кинетическая энергия электрона меньше, чем работа по преодолению тормозящего поля, то налетающий электрон внутри останавливается и выбрасывается обратно. Это по здравым представлениям, ну, и по классической физике. Посмотрим, что даёт наша теория.

2) Непрерывность гарантирует, что вероятность не прыгает резко при малом смещении, то есть вероятность меняется непрерывно.

1) Вот, кстати, на счёт предела в рекордах. Вы, наверное, анализ изучали, там сказано, что всякая монотонная ограниченная последовательность имеет предел. Когда я был на вашем месте, как только услыхал такую теорему, меня пронзило – это означает, что любые рекорды имеют предел. Рост рекордов в прыжках, в беге это заведомо ограниченная последовательность, стало быть, есть предел, то есть когда-то все эти спортивные соревнования упрутся в смысле рекордов. Конечно, прыгать можно всегда, потому что это личные соревнования, но рекорды расти перестанут. Такая вот эта теорема.

2) Если бы человек выскочил из ямы, так сказать, прыгнул выше головы, то нарушился бы закон сохранения энергии (у него нет энергии, чтобы подскочить на 3м). Но если он оказывается за стеной, его энергия в начальном состоянии и в конечном одна и та же, просто произошло действие, несколько запрещённое с точки зрения классической физики, но нарушения закона сохранения энергии нет.

3) Если бы не было туннельного эффекта, то с электричеством было бы не так просто. Это означает, что вы должны были бы, например, провода, ведущие к вашему чайнику, впаять в него, а другие два конца привести на электростанцию и впаять туда, чтобы было сплошное металлическое тело. Просто при механическом контакте ток не потёк бы, если б не было туннельного эффекта.

1) Земля, движущаяся вокруг солнца, находится в связанном состоянии, камни, которые мы на земле можем наблюдать, - в связанном состоянии (они не могут  уйти на бесконечность). В этом смысле все окружающие нас объекты в пределах солнечной системы это частицы в связанном состоянии. Единственные объекты, которые отражают несвязанные состояния, это два американских аппарата, которые были запущены лет пятнадцать назад

2) Когда переменная принимает определённые значения (счётное множество дискретных значений), говорят, что эта переменная квантуется.

3) Строго говоря, если быть очень аккуратным, при измерении энергии могут быть получены лишь определённые значения. Это важный нюанс. Квантовая теория не считает, что объект обладает какой-то характеристикой сам по себе, пока мы не пытаемся её измерить. Вот когда мы измеряем ту или иную характеристику, она появляется. Этому есть экспериментальное подтверждение. Если объект имеет сам по себе какие-то характеристики, то можно привести примеры, когда в определённых ситуациях будут получаться определённые следствия, а если он не обладает сам по себе, тогда следствия в тех же ситуациях будут другими. Это положение теории, очень интригующее, неоднократно проверялось – если мы будем считать, что система обладает сама по себе какой-то характеристикой, то из этого можно получить следствия, противоречащие наблюдаемому в действительности. Значит, при измерении энергии могут быть получены лишь определённые значения.

1) Вот сейчас кто-нибудь снаружи дверь закроет на ключ, и мы все в связанном состоянии. И будем рассматривать нас тут сейчас с точки зрения квантовой теории.


РЕКЛАМА

рефераты НОВОСТИ рефераты
Изменения
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер


рефераты СЧЕТЧИК рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты © 2010 рефераты