|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Расчет ребристого радиатораРасчет ребристого радиатораРеферат Тема: "Расчет ребристого радиатора" 2009 Расчёт ребристого радиатора при естественном воздушном охлаждении для транзистора 2Т808А заданной мощности 15 Вт 1. Задаем исходными данными: а) мощность транзистора, Р, 15 Вт; б) температура окружающей среды, Тс, 30 °С; в) максимально допустимая температура перехода, Тп, 150°С г) тепловое контактное сопротивление между переходом и корпусом, Rпк, 2°С / Вт; д) тепловое контактное сопротивление корпус – теплоотвод Rкр, 0.5С / Вт; 2. Необходимо сопоставить максимальную мощность рассеяния транзистора при допустимой температуре р-п перехода Тп, температуре среды Тс и тепловом контактном сопротивлении Rпк с заданной мощностью транзистора Рмах=(Тп-Тс)/Rпк (1) Рмах=(150–30)/2=60 Вт Если заданная мощность Р превышает Рмах, то данный транзистор на заданную мощность применять нельзя. 3. Рассчитываем тепловое сопротивление радиатора Rр исх, °С/Bт; Rр исх=q · [(Тп-Тс) – P (Rпк+Rкр)]/Р, (2) Rр исх=0,96 · [(150–30) – 15 (2+0,5)]/15=6.72°С/Bт где q – коэффициент, учитывающий неравномерное распределение температуры по теплоотводу (q=0,96); Rкр – тепловое контактное сопротивление между корпусом и радиатором. 4. Определяем средняю поверхностную температуру радиатора Тр, °С: Тр=Р ·Rр+Тс (3) Тр=15 ·7,84+30=147,6°С 5. При Rр<5 Lmin выбирается по графику 1 (рис. 5.6. «Конструирование»), иначе Lmin=0.05 м. 6. Задаём а) толщина ребра d=0.002 м; б) толщина плиты теплоотвода δ=0.004 м; в) расстояние между рёбрами b=0.008 м; г) высота ребра h=0.02 м; д) протяжённость ребра L=0.05 м. 7. Определяем число рёбер, n, шт.: n=(L+b)/(b+d) (4) n=(0,05+0,008)/(0,008+0,002)=6 шт. Рекомендуется выбирать на одно ребро больше расчётного. 8) Определяем длина плиты радиатора, l, м; l=b · (n‑1)+2*d (5) l=0,008· (6–1)+2·0,002=0,044 м 9) Определяем площадь гладкой (неоребренной) поверхности радиатора, Sгл, м2; Sгл=L ·l (6) Sгл=0,05·0,044=0,0022м2 10) Определяем площадь оребренной поверхности одностороннего оребренного радиатора при креплении ППП с гладкой стороны, Sор1, м2; Sор1=S1+S2+S3, (7) где S1=(n‑1) ·L ·b; (8) S2=(δ+2 ·h) ·L ·n+2 ·l ·δ; (9) S3=2 ·n ·δ ·h. (10) S1=(6–1)· 0,05·0,008=0,002 S2=(0,004+2·0,02) ·0,1·6+2·0,044·0,004=0.027 S3=2 ·6 ·0,004 ·0,02=0,00096 Sор1=0,002+0,027+0,00096=0,0299м2 11) Определяем коэффициент теплоотдачи конвекцией для гладкой поверхности радиатора, aк.гл, Вт/м2*град; aк.гл=А1· [(Тр-Тс)/2]1/4, (11) aк.гл=3,107 Вт/м2 · град; где А1 определяется по формуле: А1=1,424767–0,00251 ·Тм+0,000011 · (Тм)2-0,0000000013 · (Тм)3 (12) A1=1,122107 Тм=0,5 (Тр+Тс). (13) Тм=88,8 12) Определяем коэффициент теплоотдачи излучения для гладкой поверхности радиатора, aл.гл, Вт/м2*град; aл.гл=ε ·φ ·₣(Тр, Тс), (14) aл.гл=4,198 где ε – степень черноты тела (для Д‑16 ε=0,4); φ – коэффициент облучённости (для гладкой поверхности φ=1); ₣(Тр, Тс) – рассчитывается по формуле: ₣(Тр, Тс)=5,67 ·10-8 · [(Тр+267)4 – (Тс+267)4]/(Тр-Тс) (15) ₣(Тр, Тс)=10,495 13) Определяем эффективный коэффициент теплоотдачи гладкой поверхности радиатора, aгл, Вт/м2*град; aгл=aк.гл+aл.гл (16) aгл=3,107+4,198=7,307 14) Определяем мощность, рассеиваемая гладкой поверхностью радиатора, Ргл, Вт; Ргл=aгл·Sгл· (Тр-Тс) (17) Ргл=7,307·0.0082·117,6=7,045 15) Определяем тепловое сопротивление гладкой поверхности радиатора, Rгл, град / Вт; Rгл=1/(aгл·Sгл) (18) Rгл=1/(7,307 ·0,0082)=16,68 16) Определяем коэффициенты для нахождения относительного температурного напора; А2=0,18372152–0,00163976·Тм – 0,0000602· (Тм)2-0,00000001· (Тм)3, (19) А2=0,035 К=(Тр-Тс)1/4, (20) K=3,07 М=L1/4, (21) M=0,562 С=К/М, (22) C=3,07/0,562=5,463 h=А2·С·b. (23) h=0,035·5,463·0,002=0,000382 17) Определяем относительный температурный напор Н: Н=f(h) – определяется по графику (рис. 5.10. «Конструирование») H=0.1 18) Определяем температуру окружающей среды между рёбрами, Тс1, °С; Тс1=(Тр+Тс)/2 (24) Тс1=(147,6+30)/2=88,8 19) Определяем коэффициенты для нахождения конвективного коэффициента теплоотдачи оребрённой поверхности радиатора: Тм1=(Тр+Тс)/2; (25) Тм1=(147,6+30)/2=88,8 А11=1,424767–0,00251*Тм1+0,000011*(Тм1)2 - 0,0000000013*(Тм1)3; (26) А11=1,114 К1=(Тр-Тс1)1/4; (27) К1=(147,6–88,8)1/4=2,769 С1=К1/М; (28) С1=2,762/0,562=3,625 20) Определяем конвективный коэффициент теплоотдачи для оребрённой поверхности радиатора, aк.ор, Вт/м2*град; aк.ор=А11·С1 (29) aк.ор=1,114·3,625=4,038 21) Определяем коэффициент теплоотдачи излучением для оребрённой поверхности радиатора, aл.ор, Вт/м2*град; aл.ор=ε·φ·₣(Тр, Тс1), (30) aл.ор=0,4·13,038 ·0,166=0,86 где ε – степень черноты тела (для Д‑16 ε=0,4); φ=b/(2·h+b); (31) φ=0,008/(2 ·0,02+0,008)=0,166 ₣(Тр, Тс1) – рассчитывается по формуле: ₣(Тр, Тс1)=5,67·10-8· [(Тр+267)4 – (Тс1+267)4]/(Тр-Тс1) (32) 22) Определяем мощность, рассеиваемая оребрённой поверхностью радиатора, Рор, Вт; Рор=Sор· (aк.ор+aл.ор) · (Тр-Тс1) (33) Рор=0,127 (4,038+0,86) ·(147,6–88,8)=8,403 23) Определяем тепловое сопротивление оребрённой поверхности радиатора, Rор, град / Вт; Rор=(Тр-Тс1)/Рор (34) Rор=(147,6–88,8)/8,403=6,998 24) Определяем общее расчётное тепловое сопротивление радиатора, Rрасч, град / Вт; Rрасч=(Rгл·Rор)/(Rгл+Rор) (35) Rрасч=(16,68 ·6,998)/(16,68+6,998)=4,93 25) Определяем мощность, рассеиваемая радиатором, Рр, Вт; Рр=Ргл+Рор (36) Рр=7,045+8,403=15,448 26) Выполняем проверку правильности расчёта. Должны соблюдаться условия: Rрасч<=Rисх (37) 4,93<=6,72 Рр>=Р (38) 15,448>15 все условия выполняются – расчет проведен верно. |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |