|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Техническое диагностирование электрооборудования. Диагностирование изоляцииТехническое диагностирование электрооборудования. Диагностирование изоляцииМИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА рф фгоу впо БЕЛГОРОДСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯКафедра «Электрификации, автоматизации и безопасности жизнедеятельности» КУРСОВАЯ РАБОТА по дисциплине «Эксплуатация электрооборудования» на тему: «Техническое диагностирование электрооборудования. Диагностирование изоляции» Вариант № 48 Белгород 2010 Задание Вариант №48 1. По теоретической части: Техническое диагностирование электрооборудования. Диагностирование изоляции. 2. По расчетной части: Блок теплиц 6 га. 1. Теоретическая часть 1.1 Техническое диагностирование электрооборудования. Диагностирование изоляции Под действием электрического поля в изоляции происходят сложные процессы. Во-первых, из-за присутствия в диэлектриках свободных зарядов, обусловленных примесями и дефектами строения, в изоляции всегда возникает ток сквозной проходимости ia, во-вторых, происходит замедленная поляризация, т.е. смещение и поворот связанных дипольных молекул, создающих ток абсорбции ia. В-третьих, происходит мгновенная поляризация, представляющая собой упругое смещение и деформацию электронных оболочек атомов и ионов и создающая ток смещения ic. а) Рис. 1 - Схема замещения изоляции (а) и диаграмма токов, протекающих в ней (б) Для изучения перечисленных процессов используют схему замещения изоляции, показанную на рисунке 1, а. Резистор Ru характеризует сопротивление сквозному току; конденсатор С а - емкость, обусловленную дипольной поляризацией; конденсатор Сс - емкость электронной поляризации (геометрическая емкость); резистор эквивалентные потери при дипольной поляризации. На рисунке 1,6 показаны зависимости токов, проходящих через изоляцию, от времени нахождения под постоянным напряжением. Как видно, ток абсорбции затухает по мере завершения процессов замедленной поляризации, а ток сквозной проводимости сохраняется неизменным. Токи смещения столь кратковременны, что их не учитывают. Суммарный ток I имеет затухающий характер. Истинное сопротивление изоляции зависит от сквозного тока можно определить по формуле Ru=U/(i-ia) где U - приложенное напряжение, В. Поскольку измерение ia связано с определенными трудностями, сопротивление изоляции рассчитывают как частное от деления напряжения на значение тока, установившегося через минуту после включения напряжения. К этому моменту ток ia затухает и не вносит погрешность. Если же измерение проводить при небольшой выдержке времени, то может создаться неправильное представление о сопротивлении изоляции. Для исправной изоляции в ПУЭ и ПТЭ установлены нормативы, характеризующие параметры схемы замещения. Например, наименьшее допустимое сопротивление (МОм) изоляции электродвигателя мощностью Рн (кВт) при рабочей температуре определяют по выражению Ru≥Uн/(1000+0,01Рн) где Uн - номинальное линейное напряжение, В. При эксплуатации электрооборудования его изоляция подвергается влиянию рабочего напряжения, кратковременным перенапряжениям от грозовых разрядов и коммутационных операций, механическим и тепловым нагрузкам, загрязнению, увлажнению и другим неблагоприятным воздействиям. В результате этого свойства изоляции непрерывно ухудшаются. Из схемы замещения видно, что от качества изоляции зависят значения токов утечки, абсорбции, смещения и мощности потерь в цепи RaCa. Поэтому их принимают за диагностические параметры изоляции. Дополнительно используют характеристики электрической прочности. Задача диагностирования состоит в том, чтобы определить фактические значения параметров и сравнить их с соответствующими нормами. К основным способам диагностирования изоляции относятся: измерение сопротивления изоляции; измерение емкости изоляции; измерение диэлектрических потерь; испытание повышенным напряжением переменного или постоянного тока. Полное заключение о состоянии изоляции делают по совокупности результатов измерений. Но в ряде случаев выделяют отдельные определяющие параметры, которые в некоторых условиях достаточно полно оценивают качество изоляции. Такой подход оправдан для выявления конкретных неисправностей изоляции (увлажнение, старение и т. п.). Рис. 2 - Графики изменения полного тока и сопротивления сухой и влажной изоляций Определение увлажненности изоляции по коэффициенту абсорбции. Пусть изоляция некоторого электрооборудования, например электродвигателя, моделируется схемой замещения (см. рис. 1,а). Из предыдущего рассмотрения процессов электропроводности и поляризации следует, что для заведомо сухой изоляции в процессе измерения суммарный ток icyx будет резко затухать (рис. 2). У влажной изоляции такого же двигателя суммарный ток iвл больше и будет затухать медленнее, потому что из-за увлажнения прирост тока сквозной проводимости больше, чем прирост тока абсорбции. Описанный характер изменения суммарного тока определяет динамику сопротивления изоляции. При постоянном напряжении мегомметра сопротивление сухой изоляции Rсух при измерении будет резко увеличиваться, а сопротивление влажной Rвл будет возрастать незначительно. Следовательно, по состоянию сопротивления изоляции в зависимости от продолжительности измерения можно определить, увлажнена изоляция или нет. Рис. 3 - Графики изменения емкости сухой и влажной изоляций Диагностирование увлажнения изоляции состоит в измерении мегомметром ее сопротивления в моменты t1, и t2 (t2>t1) после подачи напряжения и определения отношения R t2l<R t1 , называемого коэффициентом абсорбции. Обычно принимают t1 = 15 с, t2 = 60 с и рассчитывают R60/R15. Если R60/R15> 1,3, то изоляцию считают сухой; если (R60/R15) < 1,3, то изоляцию признают влажной. Определение увлажненности изоляции способом «емкость - частота». Соотношение величин емкостей абсорбции и смещения изоляции зависит от степени ее увлажнения. В сухой изоляции преобладает электронная поляризация, характеризуемая емкостью смещения, а во влажной - дипольная поляризация (за счет дипольных молекул воды усиливается емкость абсорбции). Абсолютные значения величин этих емкостей имеют различную зависимость от частоты тока (рис. 4). Емкость сухой С cух изоляции практически не зависит от частоты, так как поляризация в ней происходит почти мгновенно. Емкость же влажной изоляции Свл с ростом частоты убывает. Это объясняется тем, что при малой частоте дипольные молекулы воды успевают следовать (поворачиваться) за полем и Свл имеет наибольшее значение. Когда же частота становится большой, молекулы из-за своей инертности не успевают следовать за полем. Абсорбционная емкость уменьшается, и ее значение приближается к емкости, обусловленной лишь электронной поляризацией. Поэтому по степени изменения емкости от частоты можно определить увлажненность изоляции. Диагностирование увлажнения состоит в измерении емкости изоляции при частоте f1, и f2 (f2> f1) и определении отношения C f1 /C f2. Обычно принимают f1= 2, f2 = 50 Гц и измеряют соответственно С2 и С5о. Если (С2<С50)< 1,2, то изоляция сухая, если (С2/С5о) > 1,2, - увлажненная. Такой способ диагностирования проводят при помощи прибора контроля влажности изоляции типа ПКВ-7. Определение местных дефектов изоляции по частичным разрядам. Принцип действия ИЧР основан на использовании воздействия электрических нестационарных процессов, сопровождающих разряды на электрический колебательный контур. Основными элементами ИЧР служат приемный колебательный контур или антенна, усилитель и измерительный прибор. Алгоритм диагностирования состоит в следующем. На изоляцию подают повышенное напряжение. Приемным колебательным контуром или антенной ИЧР исследуют пространство вокруг изоляционной системы. При этом измерительный прибор ИЧР позволяет зафиксировать высокочастотные колебания и выявить место, где они имеют наибольший уровень. Обычно это место совпадает с местным дефектом. Известны схемы, в которых ИЧР подключают к испытательной цепи через разделительный конденсатор. Определение местных дефектов изоляции по току сквозной проводимости. Изоляцию проверяют в следующей последовательности. Подключают через микроамперметр обмотку одной из фаз к регулируемому источнику переменного напряжения. Плавно увеличивают напряжение до 1200 В и записывают ток утечки I1 Затем повышают напряжение до 1800В и записывают ток утечки I2. Аналогичные измерения проводят для остальных фаз. Когда нулевая точка обмотки недоступна, то к источнику подключают один из выводов обмотки, т. е. испытывают сразу изоляцию трех фаз. Изоляцию считают исправной, если при повышении напряжения не наблюдают бросков тока; ток утечки при напряжении 1800 В не превышает 95 мкА для одной фазы (230 мкА для трех фаз); относительное приращение токов не более 0,9; коэффициент несимметрии токов утечки фаз не превышает 1,8. Определение износа изоляции по значению диэлектрических потерь. Диэлектрические потери зависят от вида диэлектрика и от его состояния. Тепловой износ, посторонние включения и влага ухудшают качество изоляции, что приводит к увеличению tgδ по сравнению с новой изоляцией. Диагностирование изоляции по tgδ используют для определения состояния в основном высоковольтного электрооборудования. Для измерения угла диэлектрических потерь применяют схему высоковольтного моста или схему с ваттметром. 2. Расчетная часть 2.1 Исходные данные для расчета Вариант № 48. Перечень электрооборудования
2.2 Расчет годовой производственной программы 2.2.1 Расчет объема работ по обслуживанию электрооборудования Известны различные подходы при определении трудоемкости работ по ТО, ТР и КР электрооборудования. Первый из них основан на измерении объема работ в условных единицах электрооборудования (УЕЭ), [4, 5,6]. Во втором случае объем работ определяется непосредственно в единицах трудоемкости (в нормочасах) [4]. В третьем случае электрооборудование сначала переводят в условные единицы ремонта (УЕР), а затем по трудоемкости одной УЕР определяют трудоемкость отдельных видов работ (ТО, ТР, ЗС, КР) [5, 4]. В курсовой работе рекомендуется использовать первый метод для расчета общего числа персонала ЭТС и для выбора пунктов ТО и штата ИТР, а третий для определения затрат труда по видам технического обслуживания для каждого электрифицированного объекта хозяйства и определения численности электромонтеров в группах по видам работ (ТО, ТР, ЗС, КР) и для выборов пунктов ТО и ремонта электрооборудования. Расчет ведется в форме таблицы 3. Электрооборудование для каждого электрифицированного объекта хозяйства определенное на основании журнала учета электрооборудования заносят в графу 1, а количество оборудования в каждой группе в графу 3. В графы 4, 5, 6 заносят условное обозначение среды, в которой работает оборудование (см. таблицу 1), число часов работы в сутки и коэффициент сезонности (см. таблицу 2) соответственно. Таблица 1 - Условное обозначение среды в зависимости от места установки электрооборудования (ЭО)
Таблица 2 - Коэффициент сезонности работы электрооборудования (ЭО)
Объем работ на единицу оборудования УЕЭ определяют по Приложению 1 и заносят в графу 7. При этом следует учесть, что в объем работ в УЕЭ силового оборудования входит также и объем работ по ТО и ТР аппаратуры управления и проводки, поэтому графы 7 и 9 расчетной таблицы 3 записываются только для силового оборудования. Объем работ по каждой группе оборудования определяется путем перемножения данных, приведенных в графах 3 и 7. Общий объем работ по участку обслуживания определяется суммированием УЕЭ в графе 8. Для определения физического количества ремонтов необходимо по данным таблицы 6 в зависимости от места установок и времени работы в сутки, определить годовое количество ТО, ТР, ЗС, КР на единицу оборудования и занести соответственно в графы 9, 10, 11, 12. Если оборудование ставится на консервацию, необходимо к годовому количеству физических технических обслуживании по нормам (графа 9) добавить одно ТО (на консервацию). Количество условных ремонтов в год (графы 17, 18, 19, 20) таблицы 3 определяют путем умножения годового количества физических ремонтов (графы 9, 10, 11, 12) на коэффициент перевода физических ремонтов по группам оборудования (графы 13, 14, 15, 16) на количество (графа 3) и на коэффициент сезонности (графа 6). Общий годовой объем работ по ТО, ТР, ЗС, КР для участка обслуживания или хозяйства определяют в физических и условных ремонтах как сумма объемов работ по электрифицированным объектам (итоги граф 17, 18, 19, 20). Таблица 3 - Расчетная таблица с картой учета электрооборудования
Таблица 4 - Годовое количество технических обслуживании (ТО), текущих ремонтов (ТР), замен смазок (ЗС) и капитальных ремонтов (КР) электрооборудования в зависимости от места его установки и времени работы в сутки
Примечание: Замена смазки производится во вращающихся электрических машинах мощностью более 70 кВт. Расчета объема работ по обслуживанию электрооборудования В соответствием с вариантом задания определяем перечень электрооборудования и заполняем таблицу А. (вариант №48) Вариант № 48 «Блок теплиц 6 га» Таблица А - Перечень электрооборудования
Далее с учетом среды размещения (таблица 1), коэффициента сезонности (таблица 2), времени работы оборудования (определяем самостоятельно), и объема работ на единицу оборудования (приложение 1) определяем объем условных единиц электрооборудования. Заполняем таблицу В. Таблица В
Примечание. При расчете объема работ для светильников и следует учитывать коэффициенты пересчета с учетом количества светильников. Пример 1. Переводной коэффициент по приложению 1 для светильников с лампами накаливания в сырых и пыльных помещениях составляет 0,91 для 10 светильников. Общее количество светильников по заданию 14. Тогда общий объем работ (УЕЭ) по данной позиции составит: 0,91 х 14/10 = 1,27. При расчете единицы объема работ для электродвигателей следует учитывать время работы электродвигателя в сутки. В приложении 1 данные по электродвигателям приведены для времени работы от 6 до 10 ч. Если двигатель работает менее 6 ч –УЕЭ умножаются на 0,85, если более 10 ч – УЕЭ умножаются на 1,20. Пример 2. Переводной коэффициент для электродвигатели А02, 3,0/1000 в сырых и пыльных помещениях по приложению 1 составляет 0,92. По заданию электродвигатель работает 6 ч. Тогда единица измерения объема работ: 0,92 х 1,0 = 0,92. Если бы время работы электродвигателя было бы менее 6 ч, то для единицы измерения получили бы: 0,92 х 0,85 = 0,78. В этом случае общий объем работ (УЕЭ) для 3-х электродвигателей составил бы: для 6 ч работы – 3 х 0,92 = 2,76; менее 6 ч работы – 3 х 0,78 = 2,34. Далее в соответствии нормативами (таблица 4) определяем годовое количество технических обслуживании (ТО), текущих ремонтов (ТР), замен смазок (ЗС) и капитальных ремонтов (КР) электрооборудования в зависимости от места его установки и времени работы в сутки. Заполняем таблицу С. Таблица С
Далее в соответствии с таблицей коэффициентов перевода физических ремонтов (приложение 2) определяем количество условных ремонтов в год. Заполняем таблицу D. Примечание. При расчете условных ремонтов за год (ТО, ТР, ЗС и КР) по приложению 2 для светильников следует учитывать коэффициенты пересчета с учетом количества светильников. Пример 3. Коэффициент перевода для ТО по приложению 2 для светильников с лампами накаливания в сырых и пыльных помещениях составляет 0,52 для 10 светильников. Общее количество светильников по заданию – 14, физических ремонтов по ТО – 4. Тогда общий объем условных ремонтов ТО по данной позиции составит: 4 х 0,52 х 14/10 = 2,91. При расчете коэффициентов пересчета для электродвигателей следует учитывать, что приведенные в приложении 2 данные соответствуют частоте вращения двигателя 1500 об/мин. Для других частот вращения электродвигателей вводятся следующие поправочные коэффициенты: при частоте вращения, об/мин: 3000 - 0,8; 1000 - 1,1; 750 -1,2; 600 -1,4; 500 и ниже - 1,5. Для электродвигателей с фазным ротором, взрывозащищенных, крановых, погружных и многоскоростных -1,3. Пример 4. Коэффициент перевода по ТО для электродвигателей мощностью 3 кВт приложению 2 составляет - 0,80. По заданию электродвигатель А02, 3,0/1000 имеет частоту вращения 1000 об/мин. Тогда коэффициент перевода для данного двигателя составит: 0,80 х 1,1 = 0,88. Общий объем условных ремонтов по ТО для 3-х двигателей с объемом физических ремонтов – 16 будет равен: 3 х 16 х 0,88 = 42,24 При определении условных ремонтов по электропроводам следует учитывать, что переводные коэффициенты в приложении 2 приведены на 1км или на 100м кабелей или проводов. В этом случае необходимо учитывать их общую длину. Пример 5. По заданию в состав электрооборудования входит Кабель АВРГ-4 х 2,5мм2, длинна которого составляет 2755м. Коэффициент перевода по ТО составляет 1,00 на 100м кабеля. Тогда количество условных ремонтов по ТО при 4-х физических за год будет равно: 4 х 1,00 х 2755/100 = 110,2 Таблица D
2.2.2 Расчет затрат труда на техническое обслуживание К плановым мероприятиям относятся технические обслуживания, текущие ремонты, замены, смазки, капитальные ремонты, К неплановым мероприятиям относятся оперативное (дежурное) техническое обслуживание, выполненное оперативным персоналом. Годовые затраты для каждого вида работ определяются путем умножения трудоемкости условной единицы ремонта (см. таблицу 5) на количество условных ремонтов соответствующего вида работ. Таблица 5 - Норматив трудоемкости на 1 условную единицу ремонта, чел-час
Результаты расчета удобно свести в таблицу 6. Таблица 6 - Расчет затрат труда
Для удобства составления графиков текущих и капитальных ремонтов, а также графиков ТО, следует определить затраты труда по отдельным объектам хозяйства, а не в целом по хозяйству. В графу 1 заносят объекты хозяйства из таблицы 3. Из этой же таблицы (графы 18, 19, 20, 21) заполняют графы 2, 3, 4, 5 соответственно. Затраты труда на проведение видов работ (графа 6, 7, 8, 9) получают путем умножения трудоемкости вида работ (см. таблицу 5) на количество условных ремонтов в год на данном объекте (графы 2, 3, 4, 5). Затраты труда на проведение оперативного (дежурного) обслуживания можно определить по формуле: где Кд - коэффициент долевого участия и затрат труда на дежурное обслуживание, Кд =0,15; Зто, ЗТР, Ззс - затраты труда на выполнение ТО, ТР и ЗС, чел.-час. Расчет затрат труда на техническое обслуживание Для нашего варианта № 48 «Блок теплиц 6 га». Исходными данными для расчетов является таблица D. С учетом изложенного в п.2.2.2 результаты расчетов сводим в таблицу Е. Таблица Е - Расчет затрат труда
2.3 Расчет численности персонала ЭТС и распределение его по подразделениям Количество персонала в группах обслуживания и ремонта определяется по формуле [5, 7]: где Nх - количество персонала в группе; 3, - годовые затраты труда на выполнение i-го вида работ, чел.-час.; Фq - фонд рабочего времени. Фонд рабочего времени согласно рекомендаций Министерства труда и социального развития можно найти следующим образом: 1. При пятидневной рабочей неделе с двумя выходными днями в году определяется количество рабочих дней: где dp - количество рабочих дней в году; dK - количество календарных дней в году; dH - количество недель в году, dH - 52; dп - количество праздничных дней в году. 2. Действительный фонд рабочего времени может быть определен по формуле: где d0 - количество отпускных дней в году согласно КЗОТ, d0 = 20; t - средняя продолжительность рабочей смены, t - 8 ч; n - число часов, на которое укорочен предпраздничный день (обычно n = 1 ч); dпп - количество предпраздничных дней в году, dпп - 8; ηр- коэффициент, учитывающий потери времени по уважительным причинам, ηр = 0,95... 0,96. Число электромонтеров в группе дежурного обслуживания может быть определено из следующего выражения: где Kq - коэффициент, учитывающий затраты труда на дежурное обслуживание, Kq - 0,15. Зная численность электромонтеров по видам работ можно определить среднегодовое число электромонтеров: Для учета различных способностей, опыта и квалификации электромонтеров можно рассчитать гарантированное число электромонтеров, обеспечивающих выполнение максимально возможного объема работ при наихудших условиях. Для этого можно воспользоваться выражением, приведенным в [6]: где N - среднегодовое число электромонтеров; ρ - оценка доверительного интервала изменения случайных величин, ρ - 1...3; Ка - коэффициент вариации объема работ исполнителей, Ка = 0,05...0,10; Кп - коэффициент вариации производительности исполнителей, Кп = 0,07...0,15. Значения Ка и Кп определяются по результатам обследования ЭТС. В приближенных расчетах для определения аргументов Ка и Кп часто используют формулы для нормального распределения случайных величин: где fmax, fmin, f- наибольшие, наименьшие и средние трудозатраты на ТО (ТР) однотипных электродвигателей одним и тем же исполнителем; τmax, τmin, τ - наибольший, наименьший и средний расход времени различными исполнителями на ТО (ТР) однотипных электродвигателей. Окончательное решение о количестве электромонтеров принимают при обосновании структуры ЭТС и оно должно находиться в пределах от N до NГ. Должности руководителей ЭТС определяют согласно данным, приведенным в таблице 7 [4, 5, 6, 7]. Для того, чтобы учесть разъездной характер труда и ненормированный рабочий день ИТР и руководителя ЭТС необходимо количество УЕЭ в хозяйстве увеличить на 15%. Таблица 7 - Должности руководителей ЭТС
Количество ИТР определяют на основании нормативов, приведенных в таблице 8 [4, 5, 6, 7]. Таблица 8 - Нормативы для определения количества ИГР
Правильность выбора штата ИТР можно проверить по данным, приведенным в таблице 9. Таблица 9 - Рекомендуемая численность ИТР ЭТС
2.3.1 Расчет численности персонала ЭТС и распределение его по подразделениям 1). Согласно изложенному в п.2.3 принимаем пятидневную рабочую неделю с двумя выходными днями в году и определяем количество рабочих дней: 2). Действительный фонд рабочего времени может быть определяем по формуле: Фd = ((251 – 20)8 – 8)0,95 = 1748 ч. 3). Определяем количество персонала в группах обслуживания и ремонта по формуле [5, 7]: Nх =(564,9 + 457,7 + 8,69)/ 1748 = 0,6 чел. Определяем число электромонтеров в группе дежурного обслуживания Nq = 0,6 х 0,15 = 0,09 чел. Среднегодовое число электромонтеров N = Nх + Nq = 0,69 чел. Гарантированное число электромонтеров определяем по формуле: Nг = 0,69(1+3х0,1)(1+3х0,15) = 1,3 чел. Таким образом для обслуживания достаточно 1 электромонтера. В связи с тем, что общий объем электрооборудования в УЕЭ составляет (таблица В) 17,28 единиц, то достаточно техника-электрика. 2.4 Выбор формы и структуры ЭТС В предприятиях АПК применяют хозяйственную, специализированную и комплексную форму технической эксплуатации электрооборудования. Методы обоснования формы ЭТС различают по числу учитываемых факторов. По первому методу учитывают только объем производственной программы. Он заключается в сопоставлении ранее рассчитанного объема работ ЭТС с данными, приведенными в таблице 10 и выбора по ней рекомендуемой формы ЭТС. Таблица 10 - Рекомендуемая форма ЭТС
По второму методу учитывается не только объем работ, но и обеспеченность службы электромонтерами N* а также удаленность хозяйства от районного центра, Для выбора формы ЭТС используют номограмму приведенную на рис. 1 [6]. Рис. 4 - Номограмма для определения формы ЭТС На оси ординат откладывают объем работ ЭТС и из точки О проводят линию до пересечения с лучом N*, соответствующим обеспеченности хозяйства электромонтерами. Из полученной точки А проводим линию AF, параллельную оси ординат. Затем линию QA продолжают влево до точки пересечения кривой, соответствующей расстоянию от хозяйства до районного центра. Точку В переносят как показано на рисунке и проходят точку F, которая определяет зону искомой формы ЭТС, При хозяйственной форме обслуживания весь комплекс работ пo TO и ТР электротехнического оборудования выполняется энергетической службой хозяйства. Для выполнения КР, проведение контрольных измерительных испытаний и пусконаладочных работ сложных установок привлекаются другие организации. При специализированной форме обслуживания хозяйство передает привлекаемой организации на полное техническое обслуживание и ремонт отдельные объекты или виды работ (текущий, капитальный ремонты или пусконаладочные работы). При комплексном обслуживании все работы по ТО, Т.Р, КР электрооборудования в хозяйстве выполняются привлекаемой организацией. Правильный выбор формы ЭТС проверяют по следующим признакам рационального построения ЭТС. 1, Хозяйственная форма ЭТС оправдана при достаточно большом объеме работ по эксплуатации электрооборудования в хозяйстве и хорошей его обеспеченностью трудовыми и материальными ресурсами, а также при значительном удалении хозяйства от районного центра. 2. Специализированная и комплексная формы ЭТС облегчают концентрацию усилий на наиболее важных в данный момент участках, оправданы при дефиците тех или иных ресурсов. Кроме того они позволяют более полно и интенсивно использовать ремонтно-обслуживающую базу. Но эти достоинства реализуются лишь при хорошей диспетчерской службе и надежной транспортной связи с хозяйствами. Постоянный рост объемов работ по технической эксплуатации электрооборудования и развитию ремонтно-обслуживающей базы ЭТС, непрерывное увеличение уровня электрификации и автоматизации АПК в условиях кооперации и специализации производства усложняет функции управления ЭТС. Поэтому важно выбрать наиболее рациональную структуру ЭТС, Организационная структура характеризует состав и взаимодействие подразделений службы при выполнении производственной программы. ЭТС может иметь: функциональную, территориальную или комбинированную (гибкую) структуры. В ее основе лежит распределение исполнителей и материально-технических ресурсов по видам выполняемых работ. Для этого создаются специализированные бригады, группы, которые выполняют только свои виды работ на всех объектах. Рис. 5 - Функциональная структура ЭТС Территориальная структура ЭТС приведена на рис.3. В ее основе лежит распределение исполнителей по объемам хозяйства (отделениям, бригадам, фермам). При этом выделенные группы исполнителей осуществляют все эксплуатационные работы, но только на своих участках. Гибкая структура ЭТС предполагает возможность ее перестройки в течении года в зависимости от номенклатуры и объекта работ, приходящихся на тот или иной сезон. Правильное обоснование структуры ЭТС заключается в том, что результаты обследования и расчетов сравнивают с известными преимуществами и недостатками той или иной структуры. Достоинства и недостатки функциональной структуры ЭТС заключаются в следующем: а) наиболее полно используется индивидуальное мастерство исполнителей; б) снижается потребность в кадрах высокой квалификации; в) уменьшается использование дорогостоящих технических средств и зданий; г) возрастает потребность в транспортных и передвижных средствах; д) увеличиваются потери времени на переезды, от 10% при радиусе обслуживания 5 км, до 25% при радиусе обслуживания 15 км. е) снижается ответственность исполнителей за состояние и использование электрооборудования. Рис. 6 - Территориальная структура ЭТС Достоинства и недостатки территориальной структуры заключаются в следующем: а) повышается оперативность обслуживания и устранения отказов; б) не всегда удается добиться равномерной загрузки исполнителей и технических средств; в) каждый электромонтер должен иметь высокую квалификацию. Нужды хозяйства наиболее полно удовлетворяет гибкая структура ЭТС. Это объясняется тем, что состав и роль факторов, влияющих на выбор рациональной структуры, существенно зависит от сезона сельскохозяйственных работ. Например, в период подготовки ферм к зимовке скота ЭТС имеет функциональную структуру, а в период зимовки территориальную структуру. Возможны и другие перестройки службы в зависимости от годовой программы и графика ТР. Обоснование структуры ЭТС выполняется графическим методом по номограмме, приведенной на рис. 4 [5]. Рис. 7 - Номограмма для выбора структуры ЭТС На оси ординат откладываем число электромонтеров N и через эту точку проводим линию АВ. Из точки В проводят линию до пересечения с лучом среднего коэффициента занятости, а затем перпендикулярно CD к ординате. Точка пересечения линий AD и CD определяет рациональную структуру ЭТС. Средний коэффициент занятости можно рассчитать при помощи следующего выражения: где hj - число электрифицированных объектов (коровников зернотоков и т.д.); mj- число месяцев использования в году. Выбор формы и структуры ЭТС В рассмотренном нами варианте «Блок теплиц 6 га» количество УЕЭ составляет 17,28 единиц. Следовательно в данном случае подходит комплексная форма ЭТС с территориальной структурой. Заключение При эксплуатации электрооборудования его изоляция подвергается влиянию рабочего напряжения, кратковременным перенапряжениям от грозовых разрядов и коммутационных операций, механическим и тепловым нагрузкам, загрязнению, увлажнению и другим неблагоприятным воздействиям. В результате этого свойства изоляции непрерывно ухудшаются. Из схемы замещения видно, что от качества изоляции зависят значения токов утечки, абсорбции, смещения и мощности потерь в цепи RaCa. Поэтому их принимают за диагностические параметры изоляции. Дополнительно используют характеристики электрической прочности. Задача диагностирования состоит в том, чтобы определить фактические значения параметров и сравнить их с соответствующими нормами. К основным способам диагностирования изоляции относятся: измерение сопротивления изоляции; измерение емкости изоляции; измерение диэлектрических потерь; испытание повышенным напряжением переменного или постоянного тока. Проведенные расчеты годовой производственной программы и численности персонала для обслуживания «Блока теплиц на 6 га» показали, что объем работ (УЕЭ) составляет 17,28 единиц, для обслуживания достаточно техника-электрика, подходит комплексная форма ЭТС с территориальной структурой. Литература 1. Будзко И.А., Левин М.С. Электроснабжение сельскохозяйственных предприятий и населенных пунктов. - М.: ВО «Агропромиздат», 1985. 2. Ганелин А.М. Экономия электроэнергии в сельском хозяйстве. - М.: Колос, 1983. 3. Ерошенко Г.П., Пястолов А.А. Курсовое и дипломное проектирование по эксплуатации электрооборудования. - М.: ВО «Агропромиздат», 1988. 4. Ерошенко Г.П. Эксплуатационные свойства электрооборудования. - Саратов: Издательство СГУ, 1984. 5. Киртбая Ю.К. Резервы в использовании машинно-тракторного парка. - М.: Колос, 1982. 6. Нормы испытания электрооборудования и аппаратов электроустановок потребителей. - М.: Энергоатомиздат, 1982. 7. Правила устройства электроустановок. - М.: Энергоатомиздат, 1986. 8. Правила технической эксплуатации и правила техники безопасности при эксплуатации электроустановок потребителей. - М.: Энергоатомиздат, 1986. 9. Пястолов А.А., Мешков А.А., Вахрамеев А. П. Монтаж, эксплуатация и ремонт электрооборудования. - М.: Колос, 1981. 10. Пястолов А.А. и др. Эксплуатация и ремонт электроустановок. - М.: Колос, 1981. 11. Система планово-предупредительного ремонта и технического обслуживания электрооборудования сельскохозяйственных предприятий (ППРЭсх). - М.: ВО «Агропромиздат», 1987. 12. Синягин Н.Н. и др. Система планово-предупредительного ремонта энергооборудования промышленных предприятий. - М.: Энергия, 1978. 13. Сырых Н.Н. Эксплуатация сельских электроустановок. - М.: ВО «Агропромиздат», 1986. 14. Таран В.П. и др. Справочник по эксплуатации электроустановок. - М.: Колос, 1983. |
РЕКЛАМА
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |