рефераты рефераты
Домой
Домой
рефераты
Поиск
рефераты
Войти
рефераты
Контакты
рефераты Добавить в избранное
рефераты Сделать стартовой
рефераты рефераты рефераты рефераты
рефераты
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты
 
МЕНЮ
рефераты Формы работы на уроках математики в начальных классах в процессе решения текстовых задач рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Формы работы на уроках математики в начальных классах в процессе решения текстовых задач

Формы работы на уроках математики в начальных классах в процессе решения текстовых задач

Департамент образования и науки Краснодарского края

ГОУ СПО Краснодарский педагогический колледж №3 Краснодарского края

Выпускная квалификационная работа

Формы работы на уроках математики в процессе решения текстовых задач

Студентка 4 курса

Школьного отделения

Базарнова Екатерина Николаевна

Руководитель: Гавриш Г.Н.

2010 г.

Оглавление

Введение

Глава 1. Формы работы младших школьников на уроках математики

1.1 Урок математики. Содержание урока, его построение. Подготовка учителя к уроку

1.2 Использование различных форм работы младших школьников в процессе решения текстовой задачи

Глава 2. Решение текстовых задач в начальной школе

2.1 Понятие «текстовая задача» и ее структура

2.2 Процесс решения текстовых задач

2.3 Обучение решению задач. Уровни сформированности умений младших школьников решать задачи. Критерии уровней

2.4 Методические приемы, используемые в работе над текстовой задачей в начальной школе

2.5 Примеры использования различных форм работы младших школьников в процессе решения текстовой задачи

Глава 3. Формирование умений младших школьников решать текстовые задачи

3.1 Диагностика уровня сформированности умений младших школьников решать задачи

3.2 Повышение уровня сформированности умений младших школьников решать задачи

3.3 Динамика уровней сформированности умений младших школьников решать задачи

Заключение

Список литературы

Введение

Математическое образование играет исключительную роль во всей образовательной структуре. Математика является не только базой естественных наук и экономики, но и важнейшей составляющей интеллектуального развития школьников.

Многие ведущие российские ученые такие, как В.А. Гусев, Г.В. Дорофеев, Н.Б. Истомина, Ю.М. Колягин, Л.Г. Петерсон и другие, отмечают необходимость математического развития младшего школьника в учебной деятельности: «начальный курс математики способствует продвижению ученика в общем развитии, становлению нравственных позиций личности ребенка» [19, 121].

Начальный курс математики раскрывается на системе целесообразно подобранных задач. Значительное место занимают в этой системе текстовые задачи. Они необходимы для того, чтобы сформировать у учащихся важные для обыденной жизни знания, а на их базе - умения и навыки, связанные с решением постоянно возникающих проблемных ситуаций.

Но чтобы решить проблему, нужно понять ее суть, сформулировать задачу словесно, создать математическую интерпретацию решаемой проблемы, выбрать методы и способы достижения поставленной цели. Через решение задач дети знакомятся с важными в познавательном и воспитательном отношении фактами. Поскольку процесс решения текстовой задачи зачастую может быть организован не единственным образом, то важным показателем математической обученности индивида является его умение выбрать наиболее рациональный способ решения поставленной задачи. Поэтому очень важно научить школьников в широком смысле слова работать с задачей.

Каждая конкретная учебно-математическая задача предназначена для достижения чаще всего не одной, а нескольких целей: педагогической, учебной, дидактической, а формулировки этих целей подсказывает содержание самой задачи. Справедливо считать, что любая задача, включенная в урок, должна быть обязательно решена на этом уроке, решение доведено до конца и записано соответствующим образом. В результате деятельность учащихся на уроке зачастую однообразна, так как наполнена большим объемом механической и непродуктивной работы. Чтобы этого избежать и чтобы дети не уставали на уроке, с энтузиазмом принимались за работу, необходимо использование разнообразных форм и методов проведения урока в целом и решения текстовых задач в частности. Вариативность методов обучения математике помогает учащимся глубже окунуться в тему, более осознанно усвоить учебный материал, научиться общаться с коллективом, развивать самостоятельность. К сожалению, большинство статей в периодической печати и специальной литературе дают нам лишь общие знания о формах работы на уроках математики.

Курс обучения младших школьников математике по программе М.И Моро предполагает формирование у детей ряда представлений и понятий, ознакомление учащихся с некоторыми теоретическими фактами, формирование умений и отработка соответствующих навыков применения теоретических знаний. Коме того, программа предполагает доступное детям обобщение учебного материала, понимание общих принципов и законов, лежащих в основе изучаемых математических фактов, осознание тех связей, которые существуют между рассматриваемыми явлениями. Рассматриваемые в начальном курсе математики основные понятия, отношения, взаимосвязи и закономерности раскрываются на системе соответствующих конкретных задач. Важно научить детей самостоятельно находить пути решения предлагаемых программой задач, применять простейшие общие подходы к их решению [16, 235].

В.Н. Рудницкая в своей программе по математике для начальной школы важнейшей целью ставит создание благоприятных условий для полноценного интеллектуального развития ребенка на уровне, соответствующем его возрастным особенностям и возможностям, и обеспечение необходимой и достаточной математической подготовки ученика для дальнейшего обучения [17].

В программе И.И. Аргинской говорится, что «Исходя из общей цели, стоящей перед обучением в системе Л.В. Занкова, начальный курс математики должен решать следующие задачи:

- дать представление о математике как науке, обобщающей существующие и происходящие в реальной жизни явления и способствующей тем самым познанию окружающего мира, созданию его широкой картины;

- сформировать знания, умения и навыки, необходимые ученикам в жизни и для успешного продолжения обучения в основном звене школы» [19, 122].

Программа И.И. Аргинской по математике для начальной школы нацелена на то, что можно назвать истинным умением решать задачи. Оно выражается, прежде всего, в решении задач без соотнесения их со знакомыми, ранее отработанными типами, а на основе распутывания той ситуации, которая отражена в данной конкретной задаче, и перевода ее на язык математических отношений [19, 123].

В основе программы Н.Б. Истоминой лежит методическая концепция, выражающая необходимость целенаправленной и систематической работы по формированию у младших школьников приемов умственной деятельности: анализа и синтеза, сравнения, классификации, аналогии и обобщения, в процессе усвоения математического содержания. Именно перечисленные приемы умственной деятельности составляют основу деятельности, связанной с решением текстовых задач [16, 265].

Современная методическая наука располагает совокупностью средств для достижения конкретных поставленных дидактических задач. Еще на этапе планирования уроков учитель подумывает систему методов и приемов учебно-воспитательной работы, сочетание различных форм организации деятельности школьников, методику применения средств обучения.

Отечественная начальная школа нацелена преимущественно на классно-урочную форму работы. Исследованиями психологов и наблюдениями учителей и методистов констатируется разделение коллектива класса по уровням успешности в обучении. Причинами такой дифференциации являются как социальные факторы, так и психические, физиологические особенности конкретных учащихся, психологические проблемы межличностных отношений школьников и т.п. В каждом конкретном случае такие причины и их сочетания индивидуальны. Поэтому для обеспечения наибольшей успешности целого класса в освоении учебного материала учителю желательно построить такой учебно-воспитательный процесс, в котором каждый ученик, независимо от его потенциала, будет вести активную познавательную деятельность.

На наш взгляд, такую возможность дает грамотно спланированное и реализованное на уроках сочетание различных форм организации деятельности учащихся. Учителя и методисты в специальной литературе, на совещаниях, семинарах, форумах подчеркивают, что применение одного и того же метода (методического приема, средства обучения) отнюдь не гарантирует одинакового уровня усвоения знаний учащимися.

Те учащиеся, которые в сравнении со своими одноклассниками более мотивированы на обучение, имеют определенный интерес к учебе, обладают достаточно высокими показателями развития внимания, памяти, речи, умеют организовывать собственную учебную деятельность и т.п., воспринимают учебный материал осознанно, глубоко, без видимых затруднений. Такие учащиеся в основном без видимых затруднений устанавливают связи между новым материалом и ранее изученным, а также применяют полученные знания в жизни, устанавливая межпредметные связи.

Другие учащиеся, которые испытывают затруднения в учебе, как правило, не обладают высокими показателями в развитии психических процессов, слабо мотивированы на учебную деятельность, не проявляют интереса к учебе. Усвоение материала на уроке такими школьниками поверхностно, непрочно. В обыденной жизни полученные знания, как правило, не находят применения. Вследствие этого для школьника создается некий замкнутый круг: знания нужны только для дальнейшей учебы, а учеба состоит лишь в приобретении новых знаний.

Раскрыть для всего класса значимость учения, показать взаимосвязи изучаемых вопросов и возможности приложения теории к практике уже в младшем школьном возрасте позволяет сочетание форм организации деятельности учащихся на уроке. Чувствуя ответственность перед классом при фронтальной работе, обмениваясь опытом (передавая или перенимая его) с одноклассниками в групповой работе, выполняя посильную деятельность при индивидуальной работе, младшие школьники получают более комфортные условия для успешного усвоения знаний по программе.

В настоящее время отечественная методическая литература предлагает инновационные разработки уроков, мультимедийные презентации, тренировочные пособия по математике, предназначенные для обучения младших школьников. Однако, на наш взгляд, эти источники носят несистемный характер, как правило, сфера их применения неширока. В связи с эти необходимость обобщения передового педагогического опыта в обучении решению текстовых задач становится бесспорной.

Отсюда вытекает проблема исследования - необходимость поиска ответа на вопрос: какие формы организации деятельности учащихся на уроках математики могут быть использованы учителем для выработки умения у учащихся решать текстовые задачи?

В качестве объекта исследования рассматривается весь процесс обучения младших школьников решению задач.

Предметом исследования являются формы работ учащихся на уроках математики в процессе решения текстовых задач.

Целью исследования является: на основе теоретического изучения форм и методов работы на уроках математики в процессе решения текстовых задач разработать методические рекомендации для учителей младших классов по использованию различных форм работы на уроках математики при решении текстовых задач.

Гипотеза: если на уроках математики систематически применять разнообразные формы работы с учащимися при обучении решению задач, то уровень их умения решать текстовые задачи повысится.

Для достижения поставленной цели необходимо решить ряд задач:

1) Раскрыть содержания понятий «формы работы на уроке математики в начальной школе», «уровень сформированности умений младших школьников», «текстовая задача»;

2) Изучить методику использования различных форм организации деятельности учащихся на уроках математики при решении текстовых задач;

3) Изучить характеристики уровней сформированности умений младших школьников решать текстовые задачи и соответствующие им критерии;

4) Разработать систему заданий для диагностики уровней развития умений младших школьников решать текстовые задачи;

5) Разработать фрагменты уроков, связанных с решением текстовых задач, с использованием разнообразных форм работы над текстовой задачей.

Методы исследования:

Теоретические:

· анализ научной, методической, периодической литературы по теме работы;

· изучение, анализ и обобщение передового опыта - с целью создания теоретической базы исследования.

Эмпирические:

· анализ учебной документации младших школьников;

· беседа с учителем начальной школы;

· анкетирование родителей учащихся;

· тестирование учащихся - с целью определения уровней сформированности умений младших школьников решать текстовые задачи.

Теоретической базой исследования явились труды известных педагогов (Истоминой Н.Б., Белошистой А.В., Аргинской И.И. и др.), раскрывшие сущность понятий «урок», «формы работы на уроках математики в начальной школе», «уровень сформированности умений младших школьников», «текстовая задача», описавших общие положения методики работы над текстовыми задачами в начальной школе. Так, в книге Т.Е. Демидова и А.П. Тонких «Теория и практика решения текстовых задач» [8, 5], наиболее полно раскрывается понятие текстовой задачи и ее структуры, приводится классификация текстовых задач, описываются методы и способы решения задач.

Особенности учащихся младших классов, которые необходимо принимать во внимание учителю при подготовке уроков математики и при решении текстовых задач, описаны в трудах психологов (Гусева В.А., Талызина Н.Ф. и др.). Например, в книге Л.В. Шелеховой «Сюжетные задачи по математике в начальной школе» [25, 30] подробно описана реализация индивидуального подхода к учащимся при обучении решению задач, приведена классификация видов самостоятельной работы школьников в зависимости от дидактической цели конкретного урока. В этой же книге приводится дифференциация учебных заданий по уровню творчества, по трудности, по объему учебного материала, по степени самостоятельности учащихся.

Дополнительная методическая и учебная литература (Петерсон Л.Г., Моро М.И., Демидова Т.Е. и др.), статьи (Сластенин Р.А., Царева С.Е., Басангова Р.Б., Смолеусова Т.В. и др.) в журналах «Начальная школа», «Начальная школа Плюс До и После», «Первое сентября», стали основой для обобщения современного передового педагогического опыта практикующих учителей и формирования банка фрагментов уроков, связанных с решением текстовых задач в начальной школе. Так, например, А.В Белошистая в статье «Вопросы обучения решению задач» [3, 73] рассматривает формирование и развитие умения представлять себе словесно заданную ситуацию как основное содержание подготовительного этапа к работе над задачей.

При проведении исследования широко использовались ресурсы сети Internet (http://wikipedia.org, http://5ka.su и др.), на страницах которой современные учителя обмениваются опытом, публикуют новейшие разработки уроков и их фрагментов, демонстрируют мультимедийное сопровождение к урокам математики.

Практическая значимость исследования представлена в виде рекомендаций учителям начальной школы по организации и применению разнообразных форм работы на уроке при обучении младших школьников решению текстовых задач.

Глава 1. Организация учебного процесса по математике в начальной школе

В настоящей главе раскрывается сущность понятий «урок» и «форма организации обучения», перечисляются требования к организации и проведению урока математики в начальной школе. Кроме того, приводится сравнительная характеристика известных форм работы на уроке математики.

1.1 Урок математики. Содержание урока, его построение. Подготовка учителя к уроку

Основной формой организации учебно-воспитательной работы с учащимися в школе является урок, сущность которого раскрывается в дидактике. Рассмотрим некоторые определения этого понятия, сформулированные в педагогической литературе.

Урок - это динамичная и вариативная основная форма организации учебного процесса, при которой в рамках точно установленного времени учитель занимается с определенным составом учащихся - с классом - по твердому расписанию, используя разнообразные методы и средства обучения для решения поставленных задач образования, развития и воспитания [14].

Урок - форма организации учебной деятельности в школе, при которой учитель занимается в рамках точно установленного времени с постоянным составом учащихся - с классом, по твердому расписанию, используя разнообразные методы для достижения поставленных им дидактических задач, определяемых требованиями учебной программы [29].

Урок - форма организации обучения с целью овладения учащимися изучаемым материалом (знаниями, умениями, навыками, мировоззренческими и нравственно-эстетическими идеями). Такая форма применяется при классно-урочной системе обучения и проводится для класса, то есть относительно постоянного учебного коллектива [35].

Современный урок - это организованное педагогом духовное общение группы, содержанием которого является научное знание, а ключевым результатом - интеллект каждого субъекта урочного общения, его духовное обогащение [29].

Сопоставляя приведенные определения понятия «урок», выделим основные его характерные черты (основные характеристики):

· урок является отрезком учебно-воспитательного процесса, ограниченным во времени;

· урок подчинен достижению заблаговременно поставленной основной дидактической цели и реализации сопутствующих задач;

· содержание урока подбирается в соответствии с целями и задачами урока, а также с учетом общедидактических требований, предъявляемых к уроку математики в начальной школе;

· средства и методы обучения подбираются учителем с перспективой наиболее полного достижения целей урока;

· организация учебной деятельности учителя и учащихся планируется (и, возможно, корректируется в ходе урока) с учетом особенностей обучаемого коллектива.

Следует отметить, что общий взгляд на понятие урока вполне можно распространить и на урок математики в начальной школе:

· современный урок математики в начальной школе продолжается 40 минут;

· каждый урок математики в начальной школе подчинен одой из следующих дидактических задач: подготовка к восприятию и усвоению нового материала, предусмотренного программой, собственно ознакомление с новым материалом, повторение и систематизация ранее изученных вопросов;

· в содержание современного урока математики в начальной школе включаются в том или ином виде все разделы начального курса математики, а именно: нумерация целых неотрицательных (возможно, дробных, отрицательных) чисел, арифметические действия, величины, текстовые задачи, алгебраический и геометрический материал;

· в качестве средств обучения на современном этапе чаще других используются учебники, тетради на печатной основе, интерактивная доска, мультимедийная аппаратура, наглядные средства обучения. Методы обучения математике в начальных классах в зависимости от целей конкретного урока могут быть как догматическими, проблемными, деятельностными;

· в ходе урока при необходимости учитель оперативно вносит коррективы в его план.

Главную роль среди перечисленных характеристик урока играют его цели: образовательные, воспитательные и развивающие. Этим целям всецело подчиняется выбор остальных характеристик урока. К образовательным целям урока математики относится формирование математических знаний, умений и навыков, предусмотренных учебной программой. Однако формировать надо не только математические, но и общеучебные знания, умения и навыки, позволяющие более рационально организовать учебную деятельность младших школьников при изучении математики. В единстве с обучением осуществляются цели воспитания и развития личности учащегося.

Учебные программы по математике предусматривают решение определенных воспитательных и развивающих задач. Для усиления воспитывающего и развивающего воздействий обучения учитель обязан тщательно анализировать соответствующие возможности математики и выделять воспитательную и развивающую цели каждого урока.

Выбор оптимальных для данного контингента младших школьников методов обучения -- одна из самых трудных методических проблем. Выбор методов не будет оптимальным, если избранный метод не удовлетворяет хотя бы одному из условий, от которых он зависит, а именно:

1) методы обучения соответствуют целям урока (обучающей, воспитывающей и развивающей);

2) метод обучения соответствует особенностям содержания изучаемого материала (его сложности, новизне, характеру);

3) метод обучения выбирается с учетом особенностей учащихся класса (уровень развития их мышления, уровень знаний и умений, сформированность навыков учебного труда, уровень воспитанности учащихся, уровень их самостоятельности и др.);

4) метод обучения определяется с учетом оснащенности кабинета дидактическими материалами, техническими средствами обучения;

5) при выборе метода обучения учитываются эргономические условия (время проведения урока по расписанию, наполняемость класса и т. д.);

6) выбранный метод обучения соответствует индивидуальным особенностям учителя (его чертам характера, уровню овладения тем или другим методом, его отношениям с классом и др.).

Еще одна важная методическая характеристика урока - деятельность учителя и учащихся - будет рассмотрена ниже, в пункте 1.2 настоящей выпускной квалификационной работы.

Рассматривая урок с точки зрения логики процесса обучения, мы придем к понятию «структура урока».

В дидактике исследуется понятие «общая дидактическая структура урока», сущность и компоненты которой усматриваются на рисунке №1 [32]:

Раскрывая структуру урока математики в начальной школе, важно выделить основные этапы урока (комбинированного типа) из множества возможных его этапов:

1. Постановка цели урока перед учащимися.

2. Ознакомление с новым материалом.

3. Закрепление нового материала: а) на уровне воспроизведения информации и способов деятельности, б) на уровне творческого применения и добывания знаний.

4. Проверка знаний, умений и навыков.

5. Систематизация и обобщение изученного материала (по теме, разделу и т.п.).

В основе успешности обучения младших школьников математике лежит ряд требований к организации и проведению урока [20]. Во-первых, для каждого урока обязательным является первый из названных выше этап Ї постановка цели, выбор остальных этапов обусловлен целью урока.

Опираясь на мотивы учения, необходимо привлечь учащихся к предстоящей на уроке работе, вызвать потребность в познании, в самоконтроле и самооценке своей деятельности. В течение всего урока учитель изучает реакцию учащихся на все происходящее на уроке.

Для практики обучения очень важно, чтобы цель урока, поставленная учителем, была понята учеником. Осознанные учеником цель и учебно-познавательная задача помогают ему действовать активно и ускоряют процесс получения результата своих учебных действий.

Очевидно, что одна структура урока может обеспечить более интересную и активную деятельность учащихся, чем другая. И надо стремиться к тому, чтобы урок оптимально обеспечивал активную познавательную деятельность всех учащихся класса.

Общая цель урока (единство обучения, воспитания и развития) порождает новые по содержанию и структуре уроки математики.

Второе важное требование к уроку математики - это рациональное построение его содержания. Бесспорно, что на уроке математики главным является его математическое содержание, которое должно глубоко отражать логику данного учебного предмета и быть определяющим во всем, что делается на уроке. Именно на базе математического содержания урока у учащихся формируются три вида умений и навыков: математические, общеинтеллектуальные (приемы умственной деятельности), умения и навыки учебной деятельности.

Важно обучать учащихся не столько математическим фактам самим по себе, сколько приобщать школьников к методам математики, развивать у них мышление. В каждом уроке важно выделить стержневую идею его математического содержания и вокруг нее сгруппировать все остальное.

Третье требование к уроку - это оптимальный выбор средств, методов и приемов обучения и воспитания на уроке.

Большая роль в отборе средств, методов и приемов работы на уроке отводится учителю. Успех дела зависит здесь во многом от того, насколько глубоко проникает учитель в специфику учебного материала, насколько умело ставит учебно-познавательные задачи, учитывая при этом уровень общей и математической подготовки учащихся, их личностные качества и прогнозируя результаты использования того или иного средства, метода или приема.

Выбирая средства, методы и приемы обучения, необходимо помнить, что нельзя их универсализировать. Ни одно из средств, ни один из методов, взятых изолированно, не смогут обеспечить достижения поставленных целей обучения.

Специфика самого учебного предмета «математика» такова, что основным в обучении младших школьников являются наглядно-вербальные средства в различных сочетаниях. Урок математики характеризуется комплексным применением наглядных и технических средств обучения.

Таким образом, мы видим, что в настоящее время понятие урока вообще и, в частности, урока математики в начальной школе хорошо раскрыто в специальной литературе. На протяжении десятилетий практически неизменными остаются взгляды на его целевую направленность, содержание, сочетание методов и средств обучения.

1.2 Формы работы младших школьников на уроках математики

Формы организации обучения (организационные формы) - это внешнее выражение согласованной деятельности учителя и учащихся, осуществляемой в определенном порядке и режиме. Они имеют социальную обусловленность, возникают и совершенствуются в связи с развитием дидактических систем [29]. Учебный процесс предполагает органическое единство средств, методов и приемов работы с организационными формами обучения. Каждому методу, приему обучения соответствует своя организационная форма, определяющаяся отношениями между учителем и учащимися и учащихся между собой. Учитель управляет всей учебной деятельностью на уроке, используя при этом различные ее формы. В дидактике принята следующая классификация форм учебной деятельности, в основе которой лежит количественная характеристика коллектива учащихся, взаимодействующих с учителем в данный момент урока:

· общие или фронтальные (работа со всем классом);

· индивидуальные (с конкретным учащимся);

· групповые (звено, бригада, пара и т. д.).

Первая предполагает совместные действия всех учащихся класса под руководством учителя, вторая -- самостоятельную работу каждого ученика в отдельности; групповая -- учащиеся работают в группах из трех-шести человек или в парах. Задания для групп могут быть одинаковыми или разными. Названные формы организации учебной деятельности учителя и учеников выступают на уроке в различных сочетаниях и последовательностях. В современных условиях обучения достаточно четко ставится вопрос о применении и сочетании таких организационных форм работы на уроке, которые обеспечивали бы эффективное приобретение школьниками не только знаний, умений и навыков, но и ценного опыта нравственных и коллективистских отношений. Огромная роль в достижении дидактических целей урока принадлежит коллективным формам работы (по сравнению с другими формами), поскольку они:

- позволяют уплотнять время урока,

- создают ситуации взаимообучения учащихся,

- существенно влияют на развитие личности.

Фронтальной формой организации учебной деятельности учащихся называется такой вид совместной деятельности учителя и учащихся на уроке, когда все ученики одновременно выполняют одинаковую, общую для всех работу, всем классом обсуждают, сравнивают и обобщают ее результаты. Учитель ведет работу со всем классом одновременно, общается с учащимися непосредственно в ходе своего рассказа, объяснения, показа, вовлечения школьников в обсуждение рассматриваемых вопросов и т.д. Это способствует

· установлению особенно доверительных отношений и общения между учителем и учащимися, а также учащихся между собой;

· воспитывает в детях чувство коллективизма;

· позволяет учить школьников рассуждать и находить ошибки в рассуждениях своих товарищей по классу;

· формировать устойчивые познавательные интересы школьников;

· активизировать их деятельность [34].

Условно механизм взаимодействия учителя (У) со школьниками (Ш) и школьников между собой изображен на рисунке №2.

Рис.2 Взаимодействие учителя и учащихся при фронтальной форме организации учебной деятельности класса

Фронтальная форма учебной работы имеет ряд существенных недостатков. Она по своей природе нацелена на некоего абстрактного ученика, в силу чего в практике работы школы весьма часто проявляются тенденции к нивелированию учащихся, побуждению их к единому темпу работы, к чему ученики в силу разных причин (своей разноуровневой работоспособности, подготовленности, реального фонда знаний, умений и навыков) не готовы. Ученики с низкими учебными возможностями работают медленно, хуже усваивают материал, им требуется больше внимания со стороны учителя, больше времени на выполнение заданий, больше тренировочных упражнений, чем ученикам с высокими учебными возможностями. Более успешные в учебе школьники нуждаются не в увеличении количества заданий, а в усложнении их содержания, в заданиях поискового, творческого типа, работа над которыми способствует развитию таких школьников и усвоению знаний на более высоком уровне.

Поэтому для максимальной эффективности учебной деятельности учащихся нельзя считать фронтальную форму организации деятельности школьников идеальной, необходимо использовать наряду с фронтальной формой организации учебной работы на уроке и другие.

Фронтальная форма организации учебной деятельности школьников должна применяться на тех этапах урока, где она целесообразна и удобна. Такими этапами являются, например, изучение нового материала и его первичное закрепление. Применение же вновь приобретенных знаний в измененных условиях требует индивидуального подхода к учащимся. Лабораторные или практические работы лишь организуют фронтально. Содержание заданий, их формулировки и уровень сложности разрабатываются с перспективой максимального развития каждого ученика.

Индивидуальная форма организации работы учащихся на уроке предполагает, что каждый ученик получает для самостоятельного выполнения задание, специально для него подобранное в соответствии с его подготовкой и учебными возможностями. В качестве таких заданий может быть работа с учебником, другой учебной литературой, разнообразными источниками (справочники, словари, энциклопедии, хрестоматии и т.д.), написание изложений, сочинений, рефератов, докладов, проведение всевозможных наблюдений и т.д. На уроках математики индивидуально подобранные упражнения чаще всего представлены в виде тренировочных упражнений - задач, примеров, уравнений и т.п.

Широко используется индивидуальная работа в программированном-обучении. Программированное обучение [греч. programma -- публичное объявление, распоряжение, указ] -- обучение по заранее разработанной программе, в которой полностью предусмотрены действия как учащихся, так и педагога (или заменяющей его обучающей машины) [35].

Условно взаимодействие учителя и школьников при индивидуальной форме организации учебной деятельности класса изображено на рисунке №3.

Рис.3 Взаимодействие учителя и учащихся при индивидуальной форме организации учебной деятельности класса

В педагогической литературе выделяют два вида индивидуальных форм организации выполнения заданий: индивидуальную и индивидуализированную.

Первая характеризуется тем, что деятельность ученика по выполнению общих для всего класса заданий осуществляется без контакта с другими школьниками, но в едином для всех темпе; вторая предполагает учебно-познавательную деятельность учащихся над выполнением специфических заданий. Именно она позволяет регулировать темп продвижения в учении каждого школьника сообразно его подготовке и возможностям.

Одним из наиболее эффективных путей реализации индивидуальной формы учебной деятельности школьников на уроке являются дифференцированные индивидуальные задания. К ним относятся задания с печатной основой, которые освобождают учащихся от механической работы и позволяют при меньшей затрате времени значительно увеличить объем эффективной самостоятельной работы. Причем для слабоуспевающих учеников дифференциация должна проявляться не столько в дифференциации заданий, сколько в мере оказываемой помощи учителем. Он наблюдает за работой школьников, следит, чтобы они работали правильными приемами, дает советы, формулирует наводящие вопросы.

Однако этого недостаточно. Не менее важным является контроль учителя за ходом выполнения заданий, его своевременная помощь в разрешении возникающих у учащихся затруднений. Если учитель в процессе индивидуальной работы школьников замечает, что некоторые ученики не справляются с заданием, учитель может прервать индивидуальную работу и дать всему классу-дополнительное-разъяснение.

Индивидуальную работу допустимо проводить на всех этапах урока, при решении различных дидактических задач Ї для усвоения новых знаний и их первичного закрепления, для формирования и закрепления умений и навыков, для обобщения и повторения изученного, для контроля, для овладения исследовательским методом и т.д.

Недостатком индивидуальной формы организации работы учащихся на уроке является то, что при выполнении заданий школьники практически не общаются друг с другом, приобретаемый опыт самостоятельной деятельности не становится достоянием коллектива, не обсуждается вместе с товарищами по классу и учителем. Эти недостатки можно компенсировать в практической работе учителя сочетанием индивидуальной формы организации учебной деятельности школьников с групповой либо фронтальной (звеньевой, бригадной, кооперативно-групповой, парной). Кроме того, подготовка и реализация индивидуальной формы работы на уроке требует от учителя существенной затраты времени уже на этапе замысла и разработки, а также высокого мастерства при управлении самим процессом и при анализе полученных результатов.

Для организации групповой (звеньевой) формы учебной работы учащихся учителю необходимо тщательно продумать все вопросы, которые связаны с образованием групп, распределением обязанностей внутри групп и объемом работы каждой группы.

Величина групп может быть различной. Она колеблется в пределах от двух до шести человек. Состав групп меняется в зависимости от содержания и характера предстоящей работы. При этом не менее половины группы должны составлять ученики, способные успешно-заниматься-самостоятельной-работой.

«Руководители групп» из числа учащихся и состав самих групп могут варьироваться на разных учебных дисциплинах. Учащиеся подбираются по принципу объединения школьников разного уровня обученности, внеурочной информированности по данному предмету, совместимости учащихся, что позволяет им взаимно дополнять и компенсировать достоинства и недостатки друг друга. В группе не должно быть негативно настроенных друг к другу учащихся.

Групповая работа может быть однородной и неоднородной. Однородная групповая работа предполагает выполнение небольшими группами учащихся одинакового для всех задания, а дифференцированная - выполнение различных заданий разными группами. В ходе работы членам одной группы разрешается совместное обсуждение хода и результатов работы, обращение-за-советом-друг-к-другу.

При групповой форме работы учащихся на уроке в значительной степени возрастает и индивидуальная помощь каждому нуждающемуся в ней ученику, как со стороны учителя, так и со стороны учащихся-консультантов.

Групповая форма работы учащихся на уроке наиболее применима и целесообразна при проведении практических, лабораторных работ и работ-практикумов по естественнонаучным предметам, при отработке навыков разговорной речи на уроках иностранного языка (работа в парах), на уроках трудового обучения при решении конструктивно-технических задач, при изучении текстов, копий исторических документов и т.п.

На уроках математики в начальной школе групповая работа может быть применена на этапе отработки вычислительных навыков, при закреплении знаний некоторых теоретических фактов (связи между компонентами арифметических действий, решение уравнений, действия с величинами). В ходе такой работы максимально используются коллективные обсуждения результатов, взаимные консультации при выполнении сложных измерений или расчетов, при изучении правил, исторических документов и т.п. Вся групповая деятельность школьников при этом вполне успешно сочетается с интенсивной-самостоятельной-работой каждого учащегося.

Правильно организованная групповая работа представляет собой вид коллективной деятельности, она успешно может протекать при четком распределении работы между всеми членами группы, взаимной проверке результатов работы каждого, полной поддержке учителя, его оперативной помощи.

Групповая деятельность учащихся на уроке складывается из следующих элементов:

1. Предварительная подготовка учащихся к выполнению группового задания, постановка учебных задач, краткий инструктаж учителя.

2. Обсуждение и составление плана выполнения учебного задания в группе, определение способов его решения (ориентировочная деятельность), распределение-обязанностей.

3.-Работа-по-выполнению-учебного-задания.

4. Наблюдение учителя и корректировка работы группы и отдельных учащихся.

5. Взаимная проверка и контроль над выполнением задания в группе.

6. Сообщение учащихся по вызову учителя о полученных результатах, общая дискуссия в классе под руководством учителя, дополнение и исправление, дополнительная информация учителя и формулировка окончательных выводов.

7. Индивидуальная оценка работы групп и класса в целом [34].

Схематически взаимодействие учителя и групп школьников представлено на рисунке №4.

Рис.4 Взаимодействие учителя и учащихся при групповой форме организации учебной деятельности класса

Успех групповой работы учащихся зависит, прежде всего, от мастерства учителя, от его умения распределять свое внимание таким образом, чтобы каждая группа, и каждый ее участник в отдельности, ощущали заботу учителя, его заинтересованность в их успехе, в нормальных плодотворных межличностных отношениях. Всем своим поведением учитель обязан выражать заинтересованность в успехе как сильных, так и слабых учащихся, вселять им уверенность в успехах, проявлять уважительное отношение к-слабым-ученикам.

Достоинства групповой организации учебной работы учащихся на уроке очевидны. Результаты совместной работы учащихся весьма ощутимы как в приучении их к коллективным методам работы, так и в формировании положительных нравственных качеств личности. Но это не говорит о том, что групповая форма организации учебной работы может быть признана идеальной, универсальной. Ею нельзя ограничивать разнообразие форм работы учащихся в классе, ее нельзя противопоставлять другим формам.

Групповая форма несет в себе и ряд недостатков. Среди них наиболее существенными являются: трудности комплектования групп и организации работы в них; учащиеся в группах не всегда в состоянии самостоятельно разобраться в сложном учебном материале и избрать самый экономный путь его изучения. В результате, слабые ученики с трудом усваивают материал, а сильные нуждаются в более трудных, оригинальных заданиях, задачах.

Только в сочетании с другими формами обучения школьников на уроке -- фронтальной и индивидуальной -- групповая форма организации работы учащихся приносит ожидаемые положительные результаты.

Сочетание этих форм, выбор наиболее оптимальных вариантов этого сочетания определяется учителем в зависимости от решаемых учебно-воспитательных задач на уроке, от учебного предмета, специфики содержания, его объема и сложности, от специфики класса и отдельных учеников, уровня их учебных возможностей и, конечно, от стиля отношений учителя и учащихся, отношений учащихся между собой, от той доверительной атмосферы, которая установилась в классе, от постоянной готовности оказывать друг другу помощь.

Необходимо подчеркнуть, что характеристика известных форм организации деятельности учащихся вполне применима к урокам математики в начальной школе. На основе изучения методической литературы нами установлено, что передовой педагогический опыт современных учителей основан на поиске оптимального сочетания форм организации деятельности школьников на уроках.

Фронтальная, групповая и индивидуальная формы работы учащихся по-разному способствуют реализации образовательных, воспитательных и развивающих задач. Поэтому необходимо рациональное их сочетание, продуманный выбор той или иной формы с учетом особенностей учебного предмета, содержания изучаемого материала, методов обучения, возрастных особенностей учащихся.

Глава 2. Текстовые задачи в начальном курсе математики

В настоящей главе раскрывается сущность понятия «текстовая задача», описывается ее структура, приводится классификация задач по разным основаниям, дается характеристика этапам обучения решать текстовые задачи. Также рассмотрены примеры дифференцирования задач по уровню их сложности.

2.1 Понятие «текстовая задача» и ее структура

С термином «задача» люди постоянно сталкиваются в повседневной жизни, как на бытовом, так и на профессиональном уровне. Каждому из нас приходится решать те или иные проблемы, которые зачастую мы называем задачами. Это могут быть общегосударственные задачи (освоение космоса, воспитание подрастающего поколения, оборона страны и т.п.), задачи определенных коллективов и групп (сооружение объектов, выпуск литературы, установление связей и зависимостей и др.), а также задачи, которые стоят перед отдельными личностями.

К решению разноплановых жизненных задач школьников начинают готовить уже в младшем школьном возрасте в процессе обучения математике.

Решая задачи, учащиеся приобретают новые или закрепляют, углубляют и систематизируют уже имеющиеся математические знания. Обучающая функция текстовых задач может быть продемонстрирована задачами, в которых

· раскрывается конкретный смысл арифметических действий,

· вводятся рациональные приемы вычислений и соответствующие им правила,

· выполняются табличные или внетабличные вычисления,

· используются соотношения между различными единицами измерения величин и т.д.

Более того, существующие межпредметные связи начального курса математики с другими учебными дисциплинами позволяют отработать умение читать, повторить грамматические нормы (правописание словарных слов, применение изучаемых правил орфографии, правил сокращения слов и т.д.).

Задачи выполняют развивающую функцию по отношению к учащимся младших классов. В процессе решения текстовых задач отрабатываются умения

· выполнять операции анализа и синтеза, абстрагирования и конкретизации,

· проводить рассуждения по аналогии,

· обобщать способы решения типовых задач

· находить признаки абстрактных математических понятий в реальных объектах и, следовательно, устанавливать связь теоретических знаний в области математики с жизнью.

Большое значение имеет решение задач и в воспитании личности учащихся:

· прививается культура мышления, общения и выражения собственных мыслей,

· вырабатывается умение слушать мнение учителя и одноклассников, анализировать и оценивать услышанное,

· вырабатывается аккуратность в ведении записей,

· расширяется кругозор,

· воспитывается чувство коллективизма среди школьников и т.д.

Поэтому важно, чтобы учитель имел глубокие представления о текстовой задаче, о её структуре, умел решать такие задачи различными способами и передавал эти знания своим ученикам.

Проблема решения и чисто математических задач, и задач, возникающих перед человеком в процессе его производственной или бытовой деятельности, изучается издавна. Однако до настоящего времени нет общепринятой трактовки самого понятия «задача». В широком смысле слова под задачей понимается некоторая ситуация, требующая исследования и разрешения человеком (или решающей системой).

Отдельно стоят математические задачи, решение которых достигается специальными математическими средствами и методами. Среди них выделяют задачи научные (например, теорема Ферма, проблема Гольбаха и др.), решение которых способствует развитию математики и ее приложений, и задачи учебные, которые служат для формирования необходимых математических знаний, умений и навыков у разных групп обучаемых (школьников, слушателей курсов, студентов и др.) и направлены на изменение качеств личности обучаемого (не знал -- знаю, не умел -- умею и т.п.).

Положив в основание классификации число действий, которые необходимо выполнить для решения задачи, выделяют простые и составные задачи. Задачу, для решения которой нужно выполнить одно арифметическое действие, называют простой. Задачу, для решения которой нужно выполнить два или большее число действий, называют составной.

Учебные математические задачи различаются по характеру их объектов. В одних задачах все объекты математические (числа, геометрические фигуры, функции и т.п..), в других объектами являются реальные объекты (люди, животные, автотранспортные и механические средства, сплавы, жидкости и т.д.) или их свойства и характеристики (количество, возраст, скорость, производительность, длина, масса и т.п.). Задачи, все объекты которых математические (доказательства теорем, вычислительные упражнения, установление признаков изучаемого математического понятия и т.д.), часто называют математическими заданиями.

Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми (сюжетными, практическими, арифметическими и т.д.). Перечисленные названия берут начало от способа записи (задача представлена в виде текста), сюжета (описываются реальные объекты, явления, события), характера математических выкладок (устанавливаются количественные отношения между значениями некоторых величин, связанные чаще всего с вычислениями). В последнее время наиболее распространенным является термин «текстовая задача».

Классификация задач по различным основаниям приведена в таблице №1.

Таблица №1. Классификации задач по различным основаниям

Основание

классификации

Виды задач

Видовая характеристика

1.

Цели

решения задач

научные

способствовать развитию математики и ее приложений, науки в целом

учебные

формирование математических знаний, умений и навыков у обучаемых

2.

Характер

объектов

математические задания

все объекты математические

текстовые

хотя бы один объект является реальным предметом или явлением

3.

Количество

данных

с избыточными данными

содержат информацию, которая не нужна для выполнения требования задачи

с недостающими данными

содержат недостаточно информации для выполнения требования задачи

4.

Уровень

сложности

типовые

решение задачи состоит в стереотипном воспроизведении заученных действий

творческо-воспроизводящие

решение задачи требует некоторой модификации заученных действий в изменившихся условиях

творческие,

эвристические

решение задачи требует поиска

новых, еще неизвестных способов действий

5.

Количество

выполняемых при решении действий

простые

для решения задачи требуется

выполнить одно действие

составные

для решения задачи требуется выполнить более одного действия

Текстовая задача - описание некоторой ситуации на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между её компонентами или определить вид этого отношения [29].

Придерживаясь современной терминологии, можно сказать, что текстовая задача представляет собой словесную модель ситуации, явления, события, процесса и т.п. Как в любой модели, в текстовой задаче описывается не все событие или явление, а лишь его количественные и функциональные характеристики [8].

Математическая задача - это связанный лаконический рассказ, в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ними определенными соотношениями, указанными в условии [8].

Любая текстовая задача состоит из двух частей: условия и требования (вопроса). Числовые значения величин и существующие между ними зависимости, т.е. количественные и качественные характеристики объектов задачи и отношений между ними, называют условием (или условиями) задачи. В условии сообщаются сведения об объектах и некоторых величинах, характеризующих данные объекты, об известных и неизвестных значениях этих величин, об отношениях между ними. В задаче обычно не одно, а несколько условий, которые называют элементарными.

Требования задачи - это указание того, что нужно найти. Они могут быть сформулированы как в вопросительной, так и в повествовательной форме, их также может быть несколько. Величину, значение которой требуется найти, называют искомой величиной, а числовые значения искомых величин - искомыми, или неизвестными.

Систему взаимосвязанных условий и требований называют высказывательной моделью задачи. Для того чтобы уяснить структуру задачи, надо выявить ее условия и требования, т.е. построить высказывательную модель задачи.

Рассматривая задачу в узком смысле этого понятия, в ней можно выделить следующие составные элементы:

Словесное изложение сюжета, в котором явно или в завуалированной форме указана функциональная зависимость между величинами, числовые значения которых входят в задачу;

Числовые значения величин или числовые данные, о которых говорится в тексте задачи;

Задание, обычно сформулированное в виде вопроса, в котором предлагается узнать неизвестные значения одной или нескольких величин.

Каждая задача - это единство условия и цели. Если нет одного из этих компонентов, то нет и задачи. Это очень важно иметь в виду, чтобы проводить анализ текста задачи с соблюдением такого единства. Это означает, что анализ условия задачи необходимо соотносить с вопросом задачи и, наоборот, вопрос задачи анализировать направленно с условием. Их нельзя разрывать, так как они составляют одно целое. Иногда задачи формулируются таким образом, что часть условия или всё условие включено в одно предложение с требованием задачи.

Рассмотрим задачу: «На тракторе «Кировец» колхозное поле площадью 600 га можно вспахать за 10 дней, а на тракторе «Казахстан» - за 15 дней. На вспашку поставлены оба трактора. За сколько дней будет вспахано это поле?»

В приведенной задаче имеется несколько величин, часть из которых известна (площадь поля, время работы каждого трактора в отдельности), часть неизвестна (производительности тракторов в отдельности и совместно, время совместной работы тракторов). Все неизвестные величины будут определены в процессе решения задачи, хотя соответствующие требования не сформулированы. Искомым является единственное требование о вычислении времени совместной работы тракторов, поскольку именно оно заключено в требовании задачи.

В реальной жизни довольно часто возникают самые разнообразные задачные ситуации. Сформулированные на их основе задачи могут содержать избыточную информацию, то есть такую, которая не нужна для выполнения требования задачи. Например: «Маша купила 6кг яблок, а ее подруга Света на 3кг больше. Сколько заплатила Маша за свою покупку, если 1кг яблок стоит 35 рублей?»

РЕКЛАМА

рефераты НОВОСТИ рефераты
Изменения
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер


рефераты СЧЕТЧИК рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты © 2010 рефераты