|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Использование элементов ТРИЗ-педагогики в обучении школьников математикеИспользование элементов ТРИЗ-педагогики в обучении школьников математике129 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Вятский государственный гуманитарный университет» Физико-математический факультет Кафедра дидактики физики и математики Выпускная квалификационная работа Использование элементов ТРИЗ-педагогики в обучении школьников математике Выполнил студент V курса физико-математического факультета (специальность 050201.65 Математика) Утёмов Вячеслав Викторович Научный руководитель: канд. пед. наук, ст. преп. кафедры дидактики физики и математики Горев Павел Михайлович Рецензент: канд. пед. наук, ст. преп. кафедры дидактики физики и математики Малых Елена Владимировна Работа допущена к защите в государственной аттестационной комиссии «___»__________2008 г. Зам. зав. Кафедрой М.В. Крутихина «___»__________2008 г. Декан факультета Е.В. Кантор Киров, 2008 Содержание Введение Глава 1. «Прикладная диалектика» и ее применение в педагогике 1.1. Теория решения изобретательских задач (ТРИЗ) 1.2. Развитие творческой личности и ТРИЗ 1.3. ТРИЗ - рабочий инструмент диалектики 1.4. Образование на основе логики и диалектики 1.5. Культура мышления 1.6. Принципы дидактики в ТРИЗ-педагогике 1.7. ТРИЗ и образовательная сфера 1.8. Этапы развития ТРИЗ-педагогики 1.9. Теория решения изобретательских задач как метод исследования педагогических систем 1.10. Термин «ТРИЗ-педагогика» Глава 2. Использование инструментов ТРИЗ в обучении школьников математике 2.1. Ситуация как средство развития творческих способностей 2.2. Мета-алгоритм изобретения ТРИЗ и решение учебных математических задач 2.3. Вепольный анализ при решении учебных математических задач 2.4. Метод переизобретения знаний 2.5. Методы технического творчества при обучении школьников математике 2.6. Принципы решения математических задач 2.7. ТРИЗ-педагогика на уроках математики Глава 3. Описание и анализ опытно-экспериментальной работы 3.1. Психологические аспекты сущности креативности 3.2. Ключевые психологические идеи тренинга 3.3. Тренинг креативного мышления 3.4. Анализ результатов опытно-экспериментальной работы Заключение Библиографический список Приложения Введение Анализ участия в программе по оценке образовательных достижений учащихся PISA (Programme for International Student Assessment: Monitoring Knowledge and Skills in the New Millennium) в исследованиях 2006 года [11], российских школьников показали, что учащиеся испытывают затруднения, среди прочих, при работе: · с заданиями, составленными на материале из разных предметных областей, для правильного выполнения которых надо интегрировать разнообразные знания, использовать общеучебные умения, отбирать и использовать адекватные описываемой ситуации способы размышления, анализа; · с заданиями, в которых неясно, к какой области знаний надо обратиться, чтобы определить способ действия или информацию, необходимые для выявления и решения проблемы; · с заданиями, где нужно привлекать дополнительную информацию (в том числе выходящую за рамки описанной в задании ситуации), или, напротив, с заданиями, содержащими избыточную информацию и «лишние» данные; · с комплексными или структурированными заданиями, состоящими из нескольких взаимосвязанных вопросов. Среди целей, предъявляемых к современному школьному образованию, выделяется формирование личности, способной решать поставленные перед ней задачи в условиях рыночной экономики, в частности, быстро находить наиболее оптимальное и эффективное решение преодолеваемой проблемы. Такая цель направлена на реализацию внутреннего потенциала школьника, развитие его творческого начала, продуктивности мышления, которые как раз и должны способствовать развитию умения справляется с выше перечисленными заданиями. Это с одной стороны. С другой стороны, в методике преподавания математики существуют три ключевых вопроса: «Что преподавать?», «Как преподавать?» и «Зачем преподавать?». Последний из них наиболее трудный. Сегодня главное в образовании - развитие, формирование общей культуры человека, способного в частности, самостоятельно добывать и перерабатывать информацию или, другими словами, на уроках математики разумней не учить математике, а учить математикой [48]. Это вызывает затруднения на практике. Необходимо внедрение на уроки математики в школе таких общих для всех дисциплин элементов, которые позволили бы интегрировать математику с другими образовательными областями. В последнее время с высоким темпом адаптируется применение ТРИЗ (теории решения изобретательских задач Г. С. Альтшуллера) в образовании, которая получило название ТРИЗ-педагогика. Это отражается в ряде диссертаций на соискание ученых степеней: проектирование образовательных технологий на основе ТРИЗ [47], развитие системно-логического мышления учащихся в процессе изучения теории решения изобретательских задач (ТРИЗ) [84] и др. Внедрение инструментов ТРИЗ в образование способствует продуктивности мышления [68], а также играет роль «общего» языка для интеграции различных образовательных областей [34]. Все это определяет актуальность темы выпускной квалификационной работы. Эффективность отдельных приемов ТРИЗ убедительно была доказана в ходе экспериментальной работы по применению ТРИЗ в педагогике [57, 58, 77, 78, 79] (по физике - А. Гин, литературе - Ю. Мурашковский, О. Алешина, по биологии - И. Андржеевская, по информатике [36], естествознанию [31,37] и др.). Однако применение ТРИЗ-педагогики на уроках математики в литературе не встречается, что и обуславливает противоречие и научную новизну настоящего исследования: применение ТРИЗ-педагогики на уроках дает положительные результаты, а ее применение на уроках математики не разработано. Цель выпускной квалификационной работы - разработать и апробировать на практике механизмы применения инструментов ТРИЗ-педагогики в обучении школьников математике. Объектом исследования выступает развивающий учебно-воспитательный процесс в условиях общеобразовательного учреждения. Предметом исследования является развитие продуктивности мышления учащихся на уроках математики через использование инструментов ТРИЗ-педагогики. В основе исследования лежат следующие гипотетические положения: · включение в образовательный процесс инструментов ТРИЗ-педагогики, способствует развитию креативности мышления; · включение в образовательный процесс инструментов ТРИЗ-педагогики, способствует развитию системности мышления; · обучение на уроках математики в средней школе будет проходить эффективней благодаря овладению учащимися практическим опытом работы с методами активизации мышления, основанных на ТРИЗ; · эффективность принципов разработанного курса не зависит от уровня сложности программного материала в экспериментальном классе. Для достижения цели и доказательства изложенных гипотетических положений были определены следующие задачи работы: · рассмотреть механизмы применения ТРИЗ в образовательной сфере; · уточнить термин ТРИЗ-педагогика с позиции педагогической технологии; · разработать механизмы использования инструментов ТРИЗ-педагогики в обучении школьников математике; · разработать курс на основе внеклассных занятий по математике с применением ТРИЗ-педагогики; · проверить данные и разработанные механизмы в ходе опытно-экспериментального преподавания, определив истинность гипотетических положений. Содержание выпускной квалификационной работы представлено во ведении, трех главах, заключении и приложениях. Библиографический список насчитывает 89 источников. В первой главе ««Прикладная диалектика» и ее применение в педагогике» рассматривается место, сущность и роль в применении инструментов ТРИЗ в образовании. Рассматривается история развития ТРИЗ, этапы становления ТРИЗ-педагогики, и уточняется термин «ТРИЗ-педагогика». Во второй главе «Использование инструментов ТРИЗ при обучении школьников математике» предлагаются механизмы применения инструментов ТРИЗ-педагогики при обучении школьников математике в общеобразовательной школе. Среди предложенных механизмов, рассматриваются методы, которые могут быть использованы на факультативных занятиях по математике (мета-алгоритм изобретения ТРИЗ, вепольный анализ), методы, которые могут быть использованы непосредственно на уроках математики (ситуация, метод «переизобретения» знаний, принципы решения математических задач), а так же универсальные методы технического творчества. В третьей главе «Описание и анализ опытно-экспериментальной работы» рассматривается курс «Тренинг креативного мышления», разработанный в рамках опытного преподавания и анализируются результаты опытно-экспериментальной работы. В приложениях представлены материалы опытного преподавания, материалы занятий с учениками, бланки для тестирования результатов Гилфорда и Торенса, использованные при анализе опытной работы. Глава 1. «Прикладная диалектика» и ее применение в педагогике И бог создал все живые существа, какие до сих пор двигаются по земле, и одно из них было человеком. И только этот ком глины, ставший человеком, умел говорить. И бог наклонился поближе, когда созданный из глины человек привстал, оглянулся и заговорил. Человек подмигнул и вежливо спросил:- А в чем смысл всего этого? - Разве у всего должен быть смысл? - спросил бог. - Конечно, - сказал человек. - Тогда предоставляю тебе найти этот смысл! - сказал бог и удалился. Боконон, персонаж книги Курта Воннегута «Колыбель для кошки». 1.1. Теория решения изобретательских задач (ТРИЗ)В 1946 году в СССР началась работа над созданием научной технологии творчества. Новая технология получила название ТРИЗ - теория решения изобретательских задач. Первая публикация по ТРИЗ относится к 1956 году [8]. Разработка ТРИЗ принадлежит советскому ученому Генриху Альтшуллеру [3, 4, 5, 7] и дальнейшее развитие получила в работах [52, 65, 88] и в материалах, регулярно публиковавшихся журналом «Техника и наука» в 1979-1983 годах.Отечественная теория решения изобретательских задач принципиально отличается от метода проб и ошибок и всех его модификаций. Основная идея ТРИЗ: технические системы возникают и развиваются не «как попало», а по определенным законам. Эти законы можно познать и использовать для сознательного - без множества «пустых» проб - решения изобретательских задач. ТРИЗ превращает производство новых технических идей в точную науку. Решение изобретательских задач - вместо поисков вслепую - строится на системе логических операций.Теоретической основой ТРИЗ являются законы развития технических систем. Прежде всего, это законы материалистической диалектики. Используются также некоторые аналоги биологических законов, ряд законов выявлен изучением исторических тенденций развития техники, широко применяются общие законы развития систем.Законы проверены, уточнены, детализированы, а иногда и выявлены путем анализа больших массивов патентной информации по сильным решениям (десятки и сотни тысяч отобранных патентов и авторских свидетельств). Весь инструментарий ТРИЗ, включая фонды физических, химических, геометрических эффектов, также выявлялся и развивался на основе изучения больших массивов патентной информации. В этом смысле ТРИЗ можно считать обобщением сильных сторон творческого опыта многих поколений изобретателей [63]: отбираются и исследуются сильные решения, критически изучаются решения слабые и ошибочные.Главный закон развития технических систем - стремление к увеличению степени идеальности: идеальная техническая система (ТС) возникает тогда, когда системы нет, а ее функция выполняется. Пытаясь обычными (уже известными) путями повысить идеальность технической системы, мы улучшаем один показатель (например, уменьшаем вес транспортного средства) за счет ухудшения других показателей (например, снижается прочность). Конструктор ищет компромиссное решение в каждом конкретном случае. Изобретатель должен сломать компромисс: улучшить один показатель, не ухудшая других. Поэтому в наиболее распространенном случае процесс решения изобретательских задач можно рассматривать как выявление, анализ и разрешение технического противоречия.Основным рабочим механизмом совершенствования ТС и синтеза новых ТС в ТРИЗ служат алгоритм решения изобретательских задач (АРИЗ) и система изобретательских стандартов. Решение задач по АРИЗ идет без множества «пустых» проб, планомерно, шаг за шагом по четким правилам корректируют первоначальную формулировку задачи, строят модель задачи, определяют имеющиеся вещественно-полевые ресурсы (ВПР), составляют идеальный конечный результат (ИКР), выявляют и анализируют физические противоречия, прилагают к задаче операторы необычных, смелых, дерзких преобразований, специальными приемами гасят психологическую инерцию и форсируют воображение.Сходные противоречия разрешают однотипными приемами, наиболее сильные приемы - комплексные (сочетания нескольких приемов, часто - сочетания приемов с физ-, хим-, геомэффектами). Самые сильные комплексные приемы образуют систему стандартов - аппарат ТРИЗ для решения типовых изобретательских задач. Следует подчеркнуть, что стандартные задачи стандартны только с позиций ТРИЗ; изобретатель, незнакомый с ТРИЗ, воспринимает такие задачи как нетипичные, сложные. Стандарты могут быть использованы для решения задач, сложных даже с позиций ТРИЗ; такие задачи решаются сочетанием нескольких стандартов.Важное значение имеет в ТРИЗ упорядоченный и постоянно пополняемый информационный фонд: указатели применения физических, химических и геометрических эффектов, банк типовых приемов устранения технических и физических противоречий. Этот фонд - операционная основа всех инструментов ТРИЗ.Особый раздел ТРИЗ - курс развития творческого воображения (РТВ). В этом курсе, в основном, на нетехнических примерах отрабатывается умение применять операторы ТРИЗ. Курс РТВ расшатывает привычные представления об объектах, ломает жесткие стереотипы.Знание законов развития ТС позволяет решать не только имеющиеся изобретательские задачи, но и прогнозировать появление новых задач. Результаты такого прогнозирования значительно точнее, чем полученные с помощью субъективных методов, например, экспертными оценками. ТРИЗ стремится к планомерной эволюции ТС. Таким образом, современная ТРИЗ превращается в ТРТС - теорию развития технических систем.ТРИЗ возникла в технике, потому что здесь был мощный патентный фонд, послуживший фундаментом теории. Но, помимо технических, существуют и другие системы: научные, художественные, социальные и т. д. Развитие всех систем подчинено сходным закономерностям, поэтому многие идеи и механизмы ТРИЗ могут быть использованы при построении теорий решения нетехнических творческих задач [72]. В частности, с помощью механизмов, используемых в ТРИЗ, была открыта ветроэнергетика растений и объяснены парадоксы, связанные с эффектом Рассела [46].Аппарат теории решения изобретательских задач постоянно проверяется, корректируется и совершенствуется в ходе практического применения. Ежегодно в сотнях школ и курсов ТРИЗ слушатели решают множество учебных и неучебных (новых производственных) задач. Анализ письменных работ позволяет объективно определять причины ошибок: совершены ли они по вине преподавателя, по вине слушателя или имеет место сбой того или иного инструмента ТРИЗ. Накопленная информация тщательно изучается, это позволяет быстро развивать методику обучения ТРИЗ и саму теорию.До 70-х годов обучение ТРИЗ велось преимущественно на экспериментальных семинарах, с 1970 года обучение сосредоточивается в постоянно действующих учебных центрах: народных университетах научно-технического творчества (Ленинград, Днепропетровск, Петрозаводск), общественных институтах и школах изобретательского творчества (Кишинев, Минск, Новосибирск, Ангарск, Владивосток), учебу организуют также центры НТТМ, различные министерства, ведомства, предприятия. Занятия ведутся в институтах патентоведения, в ряде отраслевых институтов повышения квалификации (ИПК). В 1980 году в ИПК Минэлектротехпрома впервые начата подготовка специалистов по ТРИЗ для постоянной работы в подразделениях функционально-стоимостного анализа (ФСА).За 1972-1981 годы через школы ТРИЗ прошло примерно 7000 слушателей, подано почти 11 000 заявок, получено свыше 4000 авторских свидетельств (более половины заявок еще на рассмотрении), экономия от внедрения составляет миллионы рублей, общие расходы на обучение не превышают ста тысяч.ТРИЗ - новая отрасль знания, быстро формирующаяся в отдельную науку. У ТРИЗ своя область изучения (законы развития технических систем, законы развития творческой личности), свой метод (анализ больших массивов патентной, историко-технической и историко-биографической информации), свой язык (вепольный анализ: технические «реакции» можно записывать так, как реакции химические), свой информационный фонд (принципы, методы и приемы разрешения противоречий, указатели применения эффектов).1.2. Развитие творческой личности и ТРИЗКаждый инструмент оказывает обратное действие на человека, использующего этот инструмент. ТРИЗ-инструмент предназначен для тонких, дерзких, высокоорганизованных мысленных операций. Решение одной задачи еще не меняет стиля мышления, но в ходе занятий решаются десятки, сотни задач, постепенно мышление перестраивается, становится более гибким и управляемым.ТРИЗ обеспечивает выход на решение, близкое к идеальному, но творческий процесс не сводится к одному лишь поиску решения. Для формирования активной творческой позиции нужны как минимум шесть качеств личности [17]:1) наличие достойной цели - новой (или недостигнутой), значительной, общественно полезной;2) умение программировать достижение поставленной цели;3) большая работоспособность по выполнению намеченных планов;4) умение решать творческие задачи в выбранной области, владение техникой преодоления противоречий на пути к цели;5) готовность «держать удар»: отстаивать свои идеи, выносить непризнание, непонимание;6) результативность: на пути к конечной цели должны регулярно вырабатываться промежуточные результаты.Воспитание комплекса творческих качеств - главная цель жизненной стратегии творческой личности (ЖСТЛ). Метод построения ЖСТЛ обычный для всех исследований в ТРИЗ: анализ больших информационных массивов (с целью выявления общих закономерностей). Изучено свыше тысячи биографий творческих личностей [6].Удалось проследить становление и развитие творческой личности на протяжении всей жизни. На историко-биографических примерах убедительно доказано: творческий образ жизни доступен каждому, для этого не нужны особые прирожденные способности или сверхблагоприятные условия. В силах любого человека выбрать достойную цель и начать планомерную борьбу за ее достижение [5].Подробно рассматривая путь к цели, ЖСТЛ дает человеку суммированный жизненный опыт поколений творцов: предупреждает о типичных опасностях, рекомендует конкретные методы их преодоления, предсказывает наиболее сильные ходы. Систематические исследования по ЖСТЛ постепенно формируют новую область знания - теорию развития творческой личности (ТРТЛ).1.3. ТРИЗ - рабочий инструмент диалектикиТРИЗ использует законы материалистической диалектики [5] для организации творческой деятельности. Механизмы ТРИЗ позволяют инструментализировать эти глобальные законы развития в применении к частным задачам изобретательского творчества.Методологический анализ этих разработок должен способствовать реализации инструментальной функции естествознания и его сближению с массовым изобретательством. ТРИЗ формализует наиболее ответственную стадию научно-технических разработок, на которой происходит диалектическое взаимодействие фундаментальных и прикладных исследований. Если раньше вычленение практически полезных фрагментов естественнонаучного знания осуществлялось в каждом конкретном случае стихийно, то ТРИЗ программирует ряд мыслительных и информационно-знаковых операций, гарантирующих внедрение науки в конструкторскую практику [70].1.4. Образование на основе логики и диалектикиМировое сообщество (ЮНЕСКО) признает губительность действия современной системы образования на общество. Попытки реформирования предпринимаются. Среди них можно указать более или менее целостно спроектированную в 70-х годах систему дистанционного обучения Открытого университета Великобритании. Разработчики положили в основу системы принципы гуманистического образования американского психотерапевта К. Роджерса. Однако, несмотря на широкое распространение этой системы в мире, она не приводит к изменениям в системе образования. Попытки гумманизации образования делаются и в нашей стране, но устойчивость системы настолько велика, что всякие попытки изменений она успешно поглощает [18]. Традиционные методы обучения развивают логическое мышление. Современные требования к системе обучения выходят за пределы традиционной логики, ставя задачей формировать навыки творческой личности, умеющей решать проблемные ситуации, в основе которых лежит диалектическое противоречие. Творческое мышление предполагает осознание стратегии мыследеятельности и проявляется в виде стиля мышления. Для формирования навыков организованного системного мышления предлагаются системы упражнений, выполняемых на базе алгоритма решения проблемных ситуаций [43,71]. Существующая же система образования ориентирована в основном на подготовку исполнителей, у которых готовность к творческой деятельности не сформирована. Необходимость формировать качества творческой личности только провозглашается задачей системы образования, но методы реализации этой задачи в педагогике практически отсутствуют. В то же время для выработки навыков творческого мышления можно применить алгоритмические приемы на основе ТРИЗ, разработанные в техническом творчестве для решения проблем. Требуется адаптация этой методики для системы образования. В большинстве новейших теорий, где разрабатываются проблемы интеллекта, мышление рассматривается как система интеллектуальных операций, связанных с практическими действиями. Решающее значение в процессе мышления играет субъективный фактор, так как носителем мышления является реальный человек, для деятельности которого характерно единство эмоционального, волевого и интеллектуального начал. Сама мысль рождается не из другой мысли, а из мотивирующей сферы сознания, которая охватывает влечения и потребности, интересы и побуждения, чувства [43]. При всем многообразии проблем, связанных с мышлением, авторы сознательно ограничивают круг рассматриваемых вопросов только теми, которые имеют отношение к практическим методам формирования культуры мышления. 1.5. Культура мышленияКультура мышления - это результат целенаправленного воздействия на процесс выполнения субъектом мыслительных операций с целью получить эффективные решения проблемных ситуаций [43]. Воздействие на субъект выполняет система образования. Образование должно стать обучением искусству пользоваться знаниями, вырабатывать стиль мышления, позволяющий анализировать проблемы в любой области жизни. Обучение мышлению, или формирование культуры мышления непосредственно в учебном процессе будет происходить тогда, когда учебный материал будет вводиться не как описательный, а как содержащий реальную проблему, но при этом необходима методология решения проблем. Важнейшим моментом такого учебного процесса станет переход от преимущественно нерефлексивного к осознанному овладению и владению мыслительными приемами и операциями. Подобные теоретические концепции были заложены в основу проблемного обучения, предложенного в конце 60-х - начале 70-х годов. Однако практическое внедрение проблемного обучения в учебный процесс затормозилось из-за отсутствия банка проблемных ситуаций и неподготовленности педагогов к переконструированию учебного материала. Современная эпоха создала потребность в новом типе личности, способной самостоятельно принимать решения, осознанно осуществлять свой выбор, умеющей гибко реагировать на изменения обстоятельств и самой творить новые обстоятельства. Этим потребностям удовлетворяют качества личности, которые психология определяет как творческие. Таким образом, современные социально-экономические условия функционирования общества побуждают систему образования уделять всё больше внимания проблемам творчества и формированию качеств творческой личности в процессе обучения и воспитания [43, 44, 85]. Исследования в области природы творчества выявили ряд качеств творческой личности, особенностей её мышления и условий, способствующих её развитию. Однако, как отмечают исследователи, накопленный материал не реализуется в практической педагогике для развития творческого потенциала личности [85, 86]. Разработка программ, ориентированных на активизацию и развитие творческого потенциала личности, тормозится отсутствием методического инструментария, с помощью которого можно было бы создавать творческие задания, и, самое главное, формировать навыки творческого мышления непосредственно в учебном процессе. В пособии [85] на конкретных упражнениях, которые являются учебными моделями, даются определения и характеристики компонентов мышления, способствующих протеканию творческих реакций, создавая предпосылки для их формирования. Потребность понять природу творчества возникла как следствие необходимости воздействовать на творческую деятельность с целью повышения её эффективности. Ещё древнегреческие философы стремились в своих системах обучения применять методы, которые развивали бы в учениках творческое мышление. В дальнейшем начались поиски более активных форм воздействия на человеческую психику, которые позволяли бы управлять творческой деятельностью. Исследуя проблему творчества, учитывают следующее [85]: 1) в ходе исторического развития изменялись не только средства и формы творчества, но и его субъективный фактор, то есть сам человек; 2) в творческой деятельности кульминируются не только типичные черты жизни общества, но и порождённые общественным развитием проявления психологических особенностей различных членов общества. Психология творчества как наука начала складываться на рубеже 19-го и 20-го столетий. Творчество в ней рассматривалось как психологический процесс созидания нового и как совокупность свойств личности, обеспечивающих её включённость в этот процесс. С позиций психологии основной причиной задержки обучения культуре мышления считается недостаточное внимание к тому, каким образом рефлексируются ситуации организованного и организуемого мышления. Считается, что внедрение методов формирования культуры мышления сдерживалось из-за отсутствия методологии, без которой все технологии сводятся к рекомендациям типа «для эффективного решения проблемы ее необходимо глубоко и всесторонне проанализировать» (при этом ни методы анализа проблемы, ни критерии для оценок не даются), и предлагают практическую методологию формирования культуры мышления на основе теории решения изобретательских задач (ТРИЗ) разработанной Г. С. Альтшуллером [43]. 1.6. Принципы дидактики в ТРИЗ-педагогикеЛюди постепенно осознают, что запомнить всю информацию, которая обрушивается ежедневно на человека, невозможно, да и не нужно. Поэтому нужно менять приоритет в образовании [13]. Знания должны уступить способам деятельности и творчества. Процессом педагогического творчества можно управлять на основе законов, лежащих в основе ТРИЗ. Анализ педагогической практики позволяет выделить три модели обучения: информационную, информационно-творческую и сотворчества (учителя и учащихся). «Важнейшая задача цивилизации, - писал Т. Эдисон, - научить человека мыслить» (цит. по [41]).В последние 10 лет накапливаются опыт и разработки приемов педагогической техники [23]. Приемы педагогической техники - это сеть. Они поддерживают друг друга, складываясь в единое целое, в систему. Их пять. Это немного, но каждый из них реализуется с помощью гаммы конкретных приемов [25,56].1. Принцип свободы выбора. В любом обучающем или управляющем действии, где только возможно, необходимо предоставлять право выбора. С одним важным условием - право выбора всегда уравновешивается осознанной ответственностью за свой выбор. Это можно сделать в рамках современной системы обучения. Вот некоторые примеры свободного выбора: В. Ф. Шаталов задает ученикам много задач, и они сами выбирают для решения любые из них; у С. Н. Лысенковой дети сами выбирают, какие трудные слова учительница должна написать на доске; И. П. Волков дает ученикам только тему, а учащиеся сами определяют, какой предмет изготовить и из какого материала [56].2. Принцип открытости. Необходимо не только давать знания, но еще и показывать их границы. Сталкивать ученика с проблемами, решения которых лежат за пределами изучаемого курса.3. Принцип деятельности. Нужно организовать освоение учениками знаний, умений, навыков, смыслов преимущественно в форме деятельности. Чтобы знание становилось инструментом, ученик должен с ним работать. Пока проверкой знаний считается бойкий ответ-пересказ в режиме фонографа, пока изучение и повторение осуществляются в режиме заучивания, школа работает процентов на девяносто в холостом режиме. 4. Принцип обратной связи. Регулярно контролировать процесс обучения с помощью развитой системы приемов обратной связи. Чем более развита система - техническая, экономическая, социальная или педагогическая, - тем больше в ней механизмов обратной связи. Летчик в полете отслеживает по приборам ряд параметров: от температуры за бортом до количества горючего в баках. Без этого успешный полет не представим. 5. Принцип идеальности. Идеальность - одно из ключевых понятий ТРИЗ [5]. Психоаналитикам знаком принцип удовольствия, экономистам -принцип рентабельности, инженерам - принцип повышения коэффициента полезного действия (КПД). Суть всех этих принципов едина. Любое наше действие характеризуется не только получаемой от него пользой, но и затратами сил, нервов, времени и средств. Необходимо максимально использовать возможности, знания, интересы самих учащихся с целью повышения результативности и уменьшения затрат в процессе образования.1.7. ТРИЗ и образовательная сфераТемпы развития современной цивилизации, в отличие от древних времен и средневековья, очень высоки. Человечеству приходится за единицу времени решать гораздо больше проблемных задач, чем раньше. А вслед за каждой решенной проблемной задачей появляются новые, которые также нужно решать. Решение проблемных задач есть творчество, потому что при решении проблемных задач создаются новые материальные и духовные ценности. Таким образом, обществу нужно все больше творческих личностей [69]. Эта социальная и экономическая потребность нашла свое выражение в Законе Российской Федерации «Об образовании», в Федеральной программе развития образования, в Концепции модернизации образования и других документах. Творческие личности особенно необходимы в связи с принятыми Президентом и Правительством Российской Федерации решениями о формировании Национальной инновационной системы, провозглашенным инновационным путем развития России. Таким образом, можно говорить о необходимости формирование творческих личностей учащихся. В начале 20 века было принять считать [12], что творчество - удел немногих людей, которые наделены творческими способностями от природы. А как сказано выше, таких людей обществу не хватает. Вывод один: необходимо учить творчеству, но как это делать? О методах положительного применения инструментов ТРИЗ в педагогике для обучения творчеству написано разнообразная литература [34, 66].Тогда возникает вопрос: чему учить в условиях быстрого старения знаний? Ответ на этот вопрос известен, он сформулирован во многих педагогических публикациях: нужно переходить от преимущественного обучения знаниям к преимущественному обучению методам деятельности [53], или, еще уже, учить методам творческой деятельности [34]. А инструментарий ТРИЗ, как было сказано выше, прививает творческую деятельность. ТРИЗ-педагогика - это педагогическая система, направленная на решение с помощью ТРИЗ актуальных проблем современного и будущего образования [63].1.8. Этапы развития ТРИЗ-педагогикиТРИЗ-педагогика оформилась как самостоятельное педагогическое направление в конце 80-хх гг. XX века. Основы TPИЗ педагогики заложил Г. С. Альтшуллер, который увидел, что созданная им наука не только помогает решать проблемные задач, но и формирует творческие личности. Он высказал идею создания теории развития творческой личности (ТРТЛ) и внес большой вклад в ее становление. ТРИЗ-педагогика является развитием ТРИЗ в ее применении в образовании. В развитие ТРИЗ-педагогики внесли вклад многие ученики и последователи Г.С. Альтшуллера: Е. Злотин, А. В. Зусман, Ю. П. Саламатов, И. Л. Викентьев, И. К. Каиков, В. А. Бухвалов, М. М. Зиновкина, Ю. С. Мурашковский, И. Н. Мурашковская, В. И. Тимохов, С. Модестов, М. И. Меерович, Л. П. Шрагина, Г. И. Иванов, А. А. Гин, С. Гин, М. Н. Шустерман, З. Г. Шустерман, М. С. Гафитулин, И. Г. Тамберг, А. А. Нестеренко, Т. А. Сидорчук, В. Г. Березина, Т. В. Клеймихина, С. Крейнина, А. В. Лимаренко, С. В. Сычев, О. И. Сычева и др. Историю развития ТРИЗ-педагогики можно разделить следующие этапы [34].1-й этап: ТРИЗ в клубах и кружках технического творчества.Это применение ТРИЗ в образовании еще не являлось собственно ТРИЗ-педагогикой. Хотя оно дало импульс дальнейшего вхождению ТРИЗ в образование в виде системы ТРИЗ-педагогики. Уже несколько десятков лет инженеры, изучавшие ТРИЗ на курсах, предназначенных специально для них, приходят в школы и учреждения дополнительного образования, для того, чтобы проводить внеклассные занятия по техническому творчеству. На таких занятиях дети создают идеи новых, еще не существующих, самолетов, космических кораблей, судов, автомобилей, машин и механизмов, а затем изготавливают их модели. Такие модели часто побеждают на различных конкурсах и выставках, в том числе российских и международных. По этим идеям подаются заявки на изобретения и выдаются патенты.2-й этап: ТРИЗ как предмет в школах, лицеях, гимназиях.С 90-х гг. в стране стали создаваться лицеи и гимназии; увеличивалось количество специализированных классов, ориентированных на поступление их выпускников в вузы, при этом во все большем количестве вузов преподавалась ТРИЗ. Поэтому в ряде таких специализированных классов лицеев, гимназий, школ ТРИЗ стала преподаваться как предмет за счет школьного компонента базисного учебного плана, а в некоторых случаях как платная дополнительная образовательная услуга. В то же время, такое применение ТРИЗ в школе не может полностью решить задачу формирования творческих личностей учащихся, поставленную в Законе РФ об образовании. В тех учебных заведениях, где преподавалась ТРИЗ, выявился эффект, который «подсказывал» пути дальнейшего распространения этой науки в школе. На этом этапе, перед учителями других предметов встала задача преподавать так, чтобы, изучая их предметы, ученики одновременно учились творчеству на основе ТРИЗ.3-й этап: ТРИЗ в решении творческих задач на уроках.ТРИЗ не могла войти в другие предметы в качестве содержания. Но она вошла в них в качестве метода обучения. ТРИЗ-педагогика, в полном смысле этого слова, началась с решения на уроках творческих задач. Это локально проблемные задачи (т.е. решение их известно человечеству, но неизвестно ученикам), требующие для своего решения применения ТРИЗ и тех знаний, которые изучаются по программе соответствующего предмета. Постановка задачи может выходить за пределы изучаемого предмета, но решение состоит в применении тех знаний, которые предусмотрены программой этого предмета. Работа по составлению наборов таких задач требует времени и создания коллективов разработчиков. К настоящему времени больше всего в этом направлении сделано в области биологии, опубликованы два сборника [26]. Метод творческих задач непосредственно направлен на формирование творческих способностей учащихся. Этот метод охватывал не весь урок Использование изучаемого нового материала только как «фонда эффектов» для решения творческих задач во многом сохраняет репродуктивный характер усвоения знаний, предусмотренных программой. 4-й этап: ТРИЗ в изучении нового материала.Ряд идей, положивших начало этому этапу, был высказан и изложен В.А. Бухваловым и Ю.С. Мурашковским в их книге «Изобретаем черепаху» [14], авторами некоторых задач, содержащихся в [26].Каждое изучаемое в школе понятие, в любом предмете, есть развивающаяся система, имеющая своих предшественников. У систем-предшественников были свои противоречия развития. Эти противоречия были преодолены, в результате чего и появилась система, которую сейчас ученики изучают согласно программе. При изучении нового материала нужно вскрыть эти противоречия и найти те методы ТРИЗ, которыми они были преодолены. Таким образом, ТРИЗ используется для лучшего понимания и усвоения содержания предмета. Изучение материала школьных предметов на основе ТРИЗ позволяет учащимся видеть единство нашего мира, глубже разбираться в его закономерностях, формирует у них стиль мышления, помогающий усваивать новые знания не только на уроках, ведущихся на основе ТРИЗ-педагогики, но и при самостоятельном изучении [61]. 5-й этап: ТРИЗ в решении актуальных задач развития образования.Педагогические системы - это часть антропогенного мира. В своем развитии они также преодолевают противоречия, и преодолевают их теми же методами, пусть и найденными стихийно или по интуиции, которые содержатся в ТРИЗ. Следовательно, если применять методы ТРИЗ при развитии педагогических систем не стихийно, а осознанно, то это позволит быстрее и эффективнее решать проблемы развития образования.1.9. Теория решения изобретательских задач как метод исследования педагогических системКаждый педагог имеет свою систему воспитывающего обучения, состоящую из разных инструментов - приемов, методов и форм работы. Эти педагогические инструменты постоянно развиваются - педагоги испытывают потребность в новых приемах, методах и формах работы, соответствующих изменяющимся условиям жизни. Как же появляются новые педагогические инструменты, существуют ли закономерности в их создании? Именно здесь нам может помочь теория решения изобретательских задач, которая позволяет разрешать противоречия, возникающие в любой области человеческой деятельности. В результате преодоления противоречий и рождаются, в частности, новые педагогические формы, методы и приемы работы [13].Основные элементы теории решения изобретательских задач разрабатывались Г. С. Альтшуллером для технических систем, поэтому мы рассмотрим ниже лишь их общую логику, используя для этого педагогические примеры. СистемаСистема - это целое, состоящее из взаимосвязанных элементов (подсистем), обладающее системным эффектом. Мы живем в системном мире: все объекты, окружающие нас, являются системами. Педагогические объекты и процессы не составляют исключения. Например, урок - система, состоящая из подсистем-звеньев. Каждое звено имеет свою структуру и выполняет определенные функции: проверка знаний, изучение нового материала, закрепление, инструктаж по домашнему заданию. Урок как система имеет системный эффект - развивает и воспитывает учащихся посредством деятельности на конкретном предметном содержании. Ни одно из звеньев урока не дает системного эффекта всего урока в целом.Системный операторМинимально он представляет собой девятиэкранную схему (рис. 1). Левый ряд - прошлое, центральный - настоящее, правый - будущее. Нижние три экрана - подсистемы, средние - системы, верхние - надсистемы.Рис. 1. Системный операторСистемный оператор способствует развитию системного видения педагогических объектов и процессов и, самое важное, связей между ними. Допустим, традиционный урок - это система. Поместим его в настоящее. Он состоит из подсистем-звеньев и вместе с тем входит в надсистему - систему уроков по теме. Эту иерархию можно продолжать вниз (каждое звено состоит из определенной последовательности действий, каждое действие - отдельных операций) и вверх (система уроков по теме входит в систему уроков по разделу, которые входят в систему уроков по курсу и так далее). Теперь рассмотрим прошлое традиционного урока. Четырехзвенная структура урока появилась в начале XIX века, до этого были занятия, на которых преимущество отдавалось одному - двум видам деятельности учащихся. Эти два вида и были звеньями занятий, последние входили в систему занятий по определенному курсу. Что будет после традиционного урока? РесурсыРесурсы - это структурные, функциональные и временные возможности в дидактической системе или ее элементах для дальнейшего развития. Рассмотрим основные виды ресурсов урока.Внутрисистемные (ресурсы внутри урока) - это возможности включения дополнительных звеньев в урок: самостоятельных практических работ, фрагментов лабораторных работ, элементов активных форм проведения урока (микровикторин, конкурсов и т. д.). Внешнесистемные (ресурсы, расположенные рядом с нашим уроком) - это предыдущий и последующий уроки по теме. Используя внешнесистемные ресурсы урока, можно комбинировать содержание изучаемого материала, изучение взаимосвязей, творческие задания. Надсистемные - ресурсы следующей общей системы, к которой относится наша система. Урок относится к системе уроков по теме, поэтому они и являются надсистемными ресурсами. Используя надсистемные ресурсы, можно достаточно широко комбинировать теоретическое содержание изучаемого предмета и практические задания.Ресурсы информации - возможности изменения объема содержания, изучаемого на одном (нескольких) уроках (дидактической единицы). Возможно укрепление или уменьшение объема дидактической единицы в зависимости от поставленной цели. Ресурсы времени - возможности увеличения или уменьшения продолжительности отдельных звеньев урока для определенных целей. Функциональные ресурсы - возможности для увеличения функций отдельных звеньев или всего урока. На практике достигаются за счет внесения дополнительных заданий в отдельные звенья урока. Системный ресурс - новые полезные свойства, которые могут быть получены при изменении связей между отдельными звеньями урока или новым сочетанием уроков по теме, новым сочетанием тем, разделов.При решении педагогических задач очень важно сделать предварительный анализ ресурсов, что часто упускается из виду. Например, при планировании деятельности учащихся на этапе изучения нового материала можно внести элементы пройденного, если они логически связаны, тем самым, увеличив функциональные возможности данного этапа и сохранив время для дополнительного решения задач вместо повторения теории на обобщающих уроках.Рассмотрим, как инструменты ТРИЗ могут входить при использовании различных педагогических систем.Развивающее обучение (Эльконина-Давыдова) представляет ученикам мир, различные его объекты в развертке колонки по вертикали системного оператора (надсистема - система - подсистема), тогда как мыслительный инструмент ТРИЗ - системный оператор - предусматривает как минимум 9 экранов восприятия, включая аналогичные вертикальные колонки для прошлого и будущее системы. Дополнение до полного системного оператора плюс включение инструментов ТРИЗ в уроки-исследования, позволяют повысить успешность переоткрытия знаний, эффективнее используя систему развивающего обучения.Коллективный способ обучения (КСО) усовершенствовал организацию учебного процесса, пока оставив без изменения прежнюю репродуктивную методику. По второму закону существования систем - закону согласования - новой организации учебного процесса должна соответствовать и новая творческая методика, например, ТРИЗ-педагогика. Совместное применение ТРИЗ-педагогики и КСО позволяет реализовать принцип непрерывной и безотлагательной передачи знаний, поскольку новые структурированные знания, создаваемые учащимися на уроках, будут безотлагательно сообщаться ими друг другу, системно воспринимаясь ими. Индивидуально-ориентированный способ обучения (ИОСО) в настоящее время предусматривает траектории обучения, различающиеся уровнем усвоения знаний по различным предметам. ТРИЗ-педагогика позволит конструктивно добавить в ИОСО образовательные траектории, включающие выполнение учащимися творческих научных работ и изобретений, благодаря применению инструментов ТРИЗ.Система диалектического обучения (СДО), ранее известная под названием «словесно-логический метод обучения», ставит учащихся в режим частичного (под руководством учителя) переоткрытия знаний на основе диалектики Гегеля. Это хорошо соответствует задаче формирования когнитивной (познавательной) сферы деятельности личности. В то же время, ускоряющиеся темпы развития цивилизации требуют от общества большего количества людей с развитой креативной (творческой) сферой деятельности. Здесь также - путь взаимодействия СДО и ТРИЗ-педагогики.Система «Экология и диалектика» формирует представление у учащихся о мире, как во многом случайном, неопределенном, имеющем статистические закономерности. Это, несомненно, серьезный шаг по сравнению с прежде формировавшимся представлением о мире, как о детерминированном, жестко определенном. В то же время, задача развития креативного мышления требует формирования представления о мире, как развивающемся по определенным законам, которые можно познавать и использовать для ускорения его развития, во избежание застоев в развитии, которые могут иметь и часто имеют серьезные отрицательные последствия. Это можно сделать во взаимодействии системы «Экология и диалектика» и ТРИЗ-педагогики.Проектный метод обучения нацеливает учащихся на решение проблемных задач при особой организации этого процесса. Применение ТРИЗ в проектном методе позволяет существенно повысить эффективность выполнения проектов, чаще и эффективнее представлять результаты проектов на научные конференции и выставки школьников, патентовать и внедрять их.1.10. Термин «ТРИЗ-педагогика»Куда лучше совсем не думать о постижении истины, чем пытаться делать это, не имея метода.Рене ДекартВ последние годы в российской педагогике активно разрабатывается подход, получивший название «личностно-ориентированное обучение», в котором обосновывается необходимость признания и учета уникальности личного (субъектного) опыта каждого ученика [89]. При таком подходе ученику предоставляется свобода выбора учебного содержания, поощряется индивидуальная избирательность по отношению к форме обучения, признается существование индивидуально-специфических способов усвоения материала [53, 54].Однако при этом нельзя полностью отрицать потребности общества. Общество нуждается в личностях, обладающих определенной интеллектуальной и нравственной культурой. В этом заключаются гарантии дальнейшего развития человечества [70].Известно выражение М. Монтеня: «Мозг хорошо устроенный стоит больше, чем мозг хорошо наполненный». Тем самым подчеркивается различие между образованностью (кругом знаний, получаемых в школе) и интеллектуальной воспитанностью (степенью умственного развития личности), между которыми никак нельзя ставить знак равенства.Это означает, что целью образовательного процесса является не просто усвоение содержания отдельных учебных дисциплин, но, в первую очередь, развитие и обогащение интеллектуальных ресурсов личности средствами этих дисциплин.Наряду с передачей ученику системы научных знаний об окружающей действительности, а также вооружением его методами научного познания необходимо создавать условия для его личностного роста, формирования у него психологической готовности к дальнейшей деятельности с учетом своеобразия и ценности его внутреннего мира.В ТРИЗ целевые установки педагогики предлагается решать на основе так называемой теории развития творческой личности (ТРТЛ). Отвечая на вопрос «Способна ли сегодняшняя ТРТЛ стать идеологическим стержнем образовательной системы?», многие авторы однозначно склонны к ответу «нет» [1, 70].Термины «ТРИЗ-педагогика» и «ТРИЗ + педагогика», в которых усматриваются необоснованные претензии на решение основных задач воспитания и обучения исключительно средствами ТРИЗ, назвать общепринятыми нельзя. Поэтому логичней употреблять термин «педагогика + элементы ТРИЗ». Из наиболее распространенных в отечественной педагогической практике можно выделить следующие образовательные технологии [70]:· педагогические технологии на основе личностной ориентации педагогического процесса (гуманно-личностная технология Ш. А. Амонашвили, педагогика сотрудничества);· педагогические технологии на основе активизации и интенсификации деятельности учащихся (игровые технологии, проблемное обучение, обучение на основе опорных сигналов В. Ф. Шаталова);· педагогические технологии на основе дидактического усовершенствования и реконструирования учебного материала (реализация теории поэтапного формирования умственных действий, использование укрупненных дидактических единиц П. М. Эрдниева, «диалог культур» В. С. Библера и С. Ю. Курганова);· технологии развивающего обучения (система развивающего обучения Л. В. Занкова, развивающее обучение Д. Б. Эльконина и В. В. Давыдова);· частнопредметные педагогические технологии (технология раннего и интенсивного обучения грамоте Н. А. Зайцева, технология обучения математике на основе решения задач Р. Г. Хазанкина и др.).Ни к одной из перечисленных педагогических технологий отнести применение ТРИЗ в педагогике на данный момент нельзя.Педагогическая технология должна обладать признаками системы. В структуру педагогической технологии обязательно должны входить:· концептуальная основа;· содержательная часть (цели обучения, содержание учебного материала);· описание технологического процесса (процессуальная часть): организация учебного процесса; деятельность учителя по управлению процессом усвоения материала; методы и формы работы учителя; диагностика учебного процесса.В ТРИЗ определена [55] (небесспорно) содержательная часть, а также делаются попытки определить часть процессуальную (ведется апробация отдельных форм и методов обучения). Концептуальная часть (а здесь под концепцией понимаются не основы «железной» ТРИЗ, а концепция усвоения опыта, научное обоснование процесса достижения образовательных целей) не определена совершенно [51].Все вышесказанное не позволяет считать на сегодняшний день использование элементов ТРИЗ в учебном процессе ни педагогической технологией, ни, тем более, новой отдельной педагогикой.В пособиях по ТРИЗ говорится о мышлении (его «системности», «функциональности», «диалектичности» и даже «синергетичности», т. е. о том, что связано с понятиями ТРИЗ: система, функция, противоречие и т. д.), а также о воображении (поскольку традиционная «железная» ТРИЗ имеет разработанный курс РТВ - развитие творческого воображения). Однако возрастные закономерности развития того же мышления отражены слабо, несмотря на декларируемые в пособиях требования учета возрастных и других психологических особенностей детей. Хотя методы развития мышления с учетом психологических особенностей можно встретить в работах П. Я. Гальперина, М. И. Махмутова, А. М. Матюшкина, И. С. Якиманской и т. д.На сегодняшний день отрицательными сторонами применения ТРИЗ в педагогике можно также назвать следующие: · в школах насаждается неразработанная методика преподавания ТРИЗ, основанная на поверхностном знании самих основ ТРИЗ;· наблюдающаяся «порча» самой школы ТРИЗ, большое количество дилетантов в рядах ТРИЗ, выдающих себя за экспертов или разработчиков;· внедрение ТРИЗ в учебный процесс без какого-либо учета возрастных и психологических закономерностей.Можно с большой эффективностью использовать элементы ТРИЗ в учебном процессе, но выборочно. Эффективность отдельных приемов убедительно была доказана в ходе экспериментальной работы по применению ТРИЗ в педагогике [57, 58, 77, 78, 79]: по физике (А. Гин), литературе (Ю. Мурашковский, О. Алешина), по биологии (И. Андржеевская), по информатике [36] и естествознанию [31, 37].Внедрение отдельных элементов ТРИЗ в учебный процесс способствует развития системности мышления, благодаря разработанному инструментарию самого ТРИЗ [27, 50]. Наиболее ценным положительным результатам внедрения в преподавании общеобразовательных предметов в школе элементов ТРИЗ может стать укрепления единства теоретико-методологической (концептуальной) трактовки образования и ее реализации в конкретных учебных технологиях, благодаря созданию преемственности материала основанного на инструментарии ТРИЗ. Например: · на уроке математики учитель вводить дробные числа как бисистему из числителя и знаменателя, формируя противоречие и применяя для его разрешения закон перехода в бисистему; · на уроке биологии материал о фасеточных органах зрения подается как проявление в живой природе закона перехода в полисистему и закономерностей, соответствующих принципу дробления. · на уроке русского языка, когда речь идет о возникновении приставки, ее появление связывается с стихийным применением законна перехода в бисистему.Таким образом, появляется некая комфортность усвоения различного (на первый взгляд) материала, информация, которую получает ученик, уже не кажется «взятой с потолка», формируется фундаментальность приобретенных знаний и в этом положительный эффект применения ТРИЗ в педагогике. Но ТРИЗ-педагогика - это не преподавание ТРИЗ и не развитие системы образования методами ТРИЗ. Под термином «ТРИЗ-педагогика» мы будем понимать подготовку мышления для решения творческих задач. Эта подготовка подразумевает и особую дидактику, и предметную сферу. Предмет - творческие задачи и правила их решения. Дидактика - особые упражнения, подготавливающие к решению задач, и особая деятельность по решению этих задач. При этом ТРИЗ-педагогика может использовать в своих дидактических целях методы, никак не относящиеся к собственно ТРИЗ. Так, мозговой штурм или морфологический анализ имеют ряд своих дидактических преимуществ, которые целесообразно использовать. Методологической основой для ТРИЗ-педагогики является ТРИЗ [24].Таким образом, внедрение отдельных элементов ТРИЗ в школьные предметы дает положительный результат, но о методике внедрения в школьный курс математики на данный момент говорят всего несколько работ [9, 10] одного автора, ориентированных на младших школьников. Поэтому вопрос о внедрение элементов ТРИЗ в преподавание школьного курса математики остается открытым.Глава 2. Использование инструментов ТРИЗв обучении школьников математике2.1. Ситуация как средство развития творческих способностейМатематика, особенно в школе, воспринимается как «нетворческий» предмет. О развитии творческих математических способностей на уроках математики можно прочитать в книгах Д. Пойа [64], Н. Тучнина [73] и др. Однако разговор в них идет именно о математическом творчестве, а сегодняшний социальный заказ общества предъявляет к личности, среди прочих качеств, умение действовать в нестандартных ситуациях [53], причем далеких от применения «явной» математики. Таким образом, речь идет о формировании такого качества личности как креативность, а не математическая креативность. При решении текстовых задач рекомендуется от задачи переходить к модели задачи (алгебраической и аналитической), таким образом, дальнейшее решение заключается в решении модели [39] (рис. 2). С точки зрения ТРИЗ это система (антропогенная) и к ней предъявляется требование: способствовать развитию креативности в процессе ее реализации. Опыт преподавания показывает сложность выполнения этого требования на практике. Кардинально преобразовывать данную систему не рационально (ее применения эффективно для достижения других дидактических целей математики, методика ее использования хорошо отработана) с одной стороны, а с другой преобразование необходимо для выполнения указанного требования к системе. Сформулируем ИКР: система осталось неизменной, но требование стало выполняться. Используем инструмент ТРИЗ - вепольный анализ, который позволяет добавить в систему новое «вещество» Х, которое создает поле, отвечающее предлагаемому требованию (рис. 3). 129 Тогда, используя общий алгоритм решения задачи в ТРИЗ [5], элемент Х - это некоторая ситуация (рис. 4). Именно переход от ситуации к задаче должен помочь развивать на уроках математики креативность, причем при использовании данной схемы отработанная методика по использованию модели перехода от задачи просто необходима для сохранения других дидактических целей. Задача отличается от ситуации наличием четкой формулировки, условие содержит все необходимые данные в явном виде, метод решения зачастую известен и представляет собой цепочку формальных операций, правильный ответ определен однозначно. Ситуация Под ситуацией мы будем понимать задачи «открытого» типа, внедрением в школу которых занимается ТРИЗ-педагогика (см. [21,26]) в свою очередь имеет неопределенное условие, разные подходы к решению, множества решений, благодаря чему она ближе к проблемным ситуациям, возникающим в жизни. Основная цель практико-ориентированных (прикладных и практических) задач в школе на уроках математики (А. Азевич, Е. В. Величко, М. В. Крутихина, В. А. Петров, В. В. Пикан, Н. А. Терешин, А. Н. Тихонов, Ю. Ф. Фоминых, И. М. Шапиро и др.) заключается в осуществлении содержательной и методологической связи школьного курса математики с профессиональной составляющей образования, то есть способствуют развитию профессиональных умений, входящих в состав учебной и познавательной деятельности в процессе изучения математики, а не развитию креативности учащегося. Поэтому практико-ориентированные задачи нельзя в полной мере назвать ситуацией.Пример 1. Окно имеет форму прямоугольника, завершенного сверху полукругом. Укажите такие размеры окна, чтобы при данном периметре Р оно пропускало больше света. Данный пример - практико-ориентированная задача, и её решение заключается в применении производной (задача на максимум и минимум). Четкое формулировка условия задачи, все необходимые данные в явном виде, метод решения представляет собой цепочку формальных операций. Поэтому это задача, а не ситуация.Пример 2. Как можно, не переплывая реки, измерить ее ширину [59, 60].Данный пример - ситуация. Из условия не совсем ясно, чем можно пользоваться, какая река. Она имеет разные подходы к решению, причем в каждом подходе мы переходим к формулировке новой задачи (модели задачи).1-ый способ. Используем прибор с тремя булавками на вершинах равнобедренного прямоугольного треугольника. Пусть требуется определить ширину АВ реки (рис. 5), стоя на том берегу, где точка В, и не перебираясь на противоположный. Встав где-нибудь у точки С, держите булавочный прибор близ глаз так, чтобы, смотря одним глазом вдоль двух булавок, вы видели, как обе они покрывают точки В и А. Понятно, что, когда это вам удастся, вы будете находиться как раз на продолжении прямой АВ. Теперь, не двигая дощечки прибора, смотрите вдоль других двух булавок (перпендикулярно к прежнему направлению) и заметьте какую-нибудь точку D, покрываемую этими булавками, т.е. лежащую на прямой, перпендикулярной к АС. После этого воткните в точку С веху, покиньте это место и идите с вашим инструментом вдоль прямой CD, пока не найдете на ней такую точку Е (рис. 6), откуда можно одновременно покрыть для глаза булавкой b шест точки С, а булавкой а - точку А. Это будет значить, что вы отыскали на берегу третью вершину треугольника АСЕ, в котором угол С - прямой, а угол Е равен острому углу булавочного прибора, т.е. половине прямого. Очевидно, и угол А равен половине прямого, т.е. АС = СЕ.Если вы измерите расстояние СЕ, например, шагами, вы узнаете расстояние АС, а отняв ВС, которое легко измерить, определите искомую ширину реки.2-ой способ. Здесь также находят точку С на продолжении АВ и намечают при помощи булавочного прибора прямую CD под прямым углом к СА (рис. 7). На прямой CD отмеряют равные расстояния СЕ и EF произвольной длины и втыкают в точки E и F вехи. Став затем в точке F с булавочным прибором, намечают направление FG, перпендикулярное к FC. Теперь, идя вдоль FG, отыскивают на этой линии такую точку H, из которой веха Е кажется покрывающей точку А. Это будет означать, что точки Н, Е и А лежат на одной прямой. Задача решена: расстояние FH равно расстоянию АС, от которого достаточно лишь отнять ВС, чтобы узнать, искомую ширину реки.Другие способы разрешения ситуации, использующие признаки подобия треугольников, прямоугольный треугольник с углом в 30° можно посмотреть у Я. И. Перельмана [60]. При разрешении данной ситуации мы сначала переходили к задаче (модели задачи), формулировали ее на математическом языке, и только после чего ее решали. В первом способе мы ставили перед собой задачу: используя известный равнобедренный прямоугольный треугольник измерить длину отрезка АВ. Во втором способе: использовать признаки равенства треугольников для нахождения длины отрезка АВ. Рассмотрим другой пример.Пример 3. Задача древних индусов (перевод В.К. Лебедева).Над озером тихим,С полфута размером, высился лотоса цвет.Он рос одиноко. И ветер порывомОтнес его в сторону. НетВоле цветка над водой,Нашел же рыбак его ранней веснойВ двух футах от места, где рос.Итак, предложу я вопрос:Как озера водаЗдесь глубока?Обозначим (рис. 8) искомую глубину CD пруда через . Тогда, по теореме Пифагора легко найди искомую глубину.Это задача, у неё четкое формулировка условия, все необходимые данные в явном виде, метод решения представляет собой цепочку формальных операций. Попробуем превратить данную задачу в ситуацию. Пример 4. Как можно измерить глубину реки с берегаКонтрольное решение: рассмотрим ресурсы с точки зрения ТРИЗ, которыми мы располагаем. Текущая вода, берег, дно, человек. Упростим задачу. Как измерить с берега глубину водоема с неподвижной водой? Например, с берега озера. Тоже непросто, упростим еще. Как измерить глубину неподвижной воды у самого берега. А это равносильно измерению глубины колодца. Надо привязать к камню веревку или леску с поплавками, разнесенными, скажем, на 1 метр и бросить камень в колодец, или может помочь метод из примера 3. А как измерить глубину озера с берега? Во-первых, надо чтобы веревка была перпендикулярна поверхности воды. Как это сделать? На веревку с камнем навесим поплавки и бросим камень в нужное место озера, тогда будет видно, сколько поплавков утонуло, а сколько лежит на поверхности. Введем следующее усложнение задачи - течение. Отметим место на берегу реки и перпендикулярно берегу бросим камень с веревкой и с поплавками на середину реки. Течение отнесет веревку с поплавками на расстояние В. Определим число погруженных поплавков K и рассчитаем по теореме Пифагора глубину реки .В данном примере мы снова переходили от ситуации к формулировке задачи (модели задачи), уточняли ее, рассматривали используемые ресурсы. Вариантов решения у данного примера скорее очень много, они опираются на использование каких-либо свойств, причем некоторые решения нематематические.Переход от задачи к ее модели для решения достаточно хорошо применяется в основной школе, а переход от ситуации к задаче применятся редко, «неосознанно», но как показывает первый опыт использования данного перехода [80], именно он может стать опорой для развития творческих способностей у учащихся на уроках математики в школе.2.2. Мета-алгоритм изобретения ТРИЗ и решение учебных математических задачТРИЗ является качественной теорией. Строгое соответствие моделей качественных теорий концепциям конструктивной математики очень упрощенно; можно сказать, что конструктивная математика имеет дело с качественными моделями, определяемыми следующим конструктивным способом [19]: 1) фиксируются исходные конструктивные объекты, определяемые, в частности, в виде примеров или образцов; 2) фиксируются правила (не обязательно аксиоматические), по которым строятся новые объекты из уже имеющихся; 3) фиксируются условия, налагаемые на исходные и построенные объекты и определяющие их конструктивность (например, осуществимость, полезность и эффективность).Совокупность правил, определяющих построение новых конструктивных образов, называется алгоритмом. Обобщенные алгоритмы, на основе которых могут быть построены специализированные (ориентированные на определенное приложение, на определенный класс моделей) или детализированные (более точные) алгоритмы в ТРИЗ называются мета-алгоритмами [55]. Поэтому логично рассмотреть применение мета-алгоритма ТРИЗ в преподавании математики. Хотя школьная математика отлична от математики [48], но преемственность построения рассуждений сохраняется.Рассмотрим обобщенную схему мета-алгоритма изобретения (рис. 9, Prof. Dr. Dr. Sc. techn. M. Orloff, Modern TRIZ Academy International, Berlin), а также упрощенный мета-алгоритм для решения некоторого класса учебных математических задач (рис. 10).Тогда ход решения задачи можно уложить в 4 крупных этапа:· диагностика (исследование задачи),· редукция (построение модели задачи (алгебраической, аналитической и др.)),· трансформация (выбор метода решения (вычисления) модели),· верификация (проверка решения).При этом данная схема совпадает с методикой организации решения учебной математической задачи соблюдением формально-логической схемы рассуждения «анализ - построение - доказательство - исследование» при решении геометрических задач на построение и т.п. [39, 82].Переходы 1 и 3 требуют знания теории моделей и прикладных областей ее применения. Переход 2 требует умения строить и решать модели теории. Пример 5. В двух цехах завода стоят станки двух типов. Первого типа 2 и 1 соответственно в первом и втором цехе, второго - 6 и 2. Определите среднею мощность, потребляемой станком каждого типа, если первый цех потребляет 340 киловатт-часов, второй - 130. Решение представим в виде мета-алгоритма (рис. 11).Пусть в двух цехах завода работает разное количество станков двух типов. Для точного определения средней мощности, потребляемой станком определенного типа, было решено воспользоваться имеющимися измерениями расхода электроэнергии по каждому цеху за сутки. На этапе диагностики проблемы было установлено количество станков каждого типа и данные по потреблению электроэнергии. На этапе редукции была построена система из двух линейных уравнений с двумя неизвестными. На этапе трансформации из двух простейших подходящих методов (метод исключения переменных и метод замены и подстановки переменных) выбрали последний. На этапе верификации путем прямой подстановки полученных значений искомых переменных в исходные уравнения убедились в правильности решения задачи.Этот пример служит практической иллюстрацией абстрактной схемы, приведенной на рис. 10. Пример 6. Что больше или ?Решение представлено на рис. 12. Необходимо сравнить два числа. На этапе диагностики проблемы было установлено что непосредственное сравнение затруднительно. На этапе редукции была построена функция (обобщение по двум ее значениям) . На этапе трансформации из методов доказательства монотонности функции выбрали наиболее подходящий с использованием производной . На этапе верификации доказали монотонность. На этапе верификации путем исследования полученного решения убедились в правильности решения задачи. Таким образом, при использовании мета-алгоритма для решения учебных математических задач появляется возможность наглядней представлять ход решения задачи. Причем на этапах диагностики и редукции преимущественно используется анализ (проблемы решения), на этапах трансформации и верификации - синтез (идеи решения). Тем самым, используя при решении задачи мета-алгоритм, ребенок на уроках математики осознано учиться использовать разные способы мышления. 2.3. Вепольный анализ при решении учебных математических задач Обучение - это замена удивления пониманием …Виктор КротовИзвестно, что ни одно событие в материальном мире не происходит без видоизменения вещества и энергии (поля). Взаимодействие этих двух составляющих и определяет все многообразие мира. При решении задач зачастую трудно сразу найти решение, требуются тактические шаги, конкретизирующие наши действия. Для этого нужен точный анализ взаимодействия веществ и энергии в оперативной зоне задачи, с точки зрения ТРИЗ.Выйти из этого положения в изобретательской деятельности позволяет так называемый вепольный анализ. Слово «веполь» образовано от слов «вещество» и «поле». Вепольный анализ проводится в оперативной зоне возникновения задачи, т. е. там, где выявлено физическое противоречие. В этом месте обязательно должны быть два вещества и , полезно или вредно взаимодействующие между собой, и поле П, которое связывает эти два вещества (рис. 12).В нашей работе будем придерживаться упрощенной схемой вепольного анализа [2, 35], основанного на двух правилах:1) если одно вещество вредно воздействует на другое, то между ними вводят третье вещество;2) если поле вредно воздействует на вещество, то между ними водят второе поле, нейтрализующее действие первого, или его вредное действие оттягивает третье вещество.При решении учебных математических задач в роли «веществ» выступают объекты математики (геометрические фигуры, числа), а в качестве поля свойства объектов, их движение и т.п.Пример 7. Может ли пятизначное число равняться произведению своих цифр [49]?Решение. Применим вепольный анализ ТРИЗ, для этого необходимо определить как минимум два вещества и поле, воздействующее на них. Пусть есть число . Произведение цифр числа равняется . Рассмотрим два вещества - , - К и поле - П, действующее на вещества «вредно» (вещества между собой связаны, изменение одного вещества ведет к изменению другого, что затрудняет нахождения такого вещества, что бы ), (рис. 12).129 Используем первое правило вепольного анализа, введем новое вещество , оттягивающие на себя вредное воздействие поля П. (рис. 13). Решение задачи на вепольном языке составлено. Теперь надо определить, что же такое третье вещество оттягивающие на себя вредное действие поля. Это вещество должно взаимодействовать с , если учесть, что отношение двух чисел - это их сравнение, получим, вспомнив условие задачи, что надо найти такое число, которое легко сравниваться с числами и К. Тогда в качестве такого вещества можно взять , а , получим . Равенства нет, а значит, таких чисел нет.Пример 8. Как нужно у квадрата срезать 4 угла, чтобы получился правильный восьмиугольник?129 На вепольном языке получаем, что есть одно вещество и на него «вредно» действует некоторое поле П (рис. 14), (первоначально трудно увидеть положительные стороны действия поля П). Второе правило гласит, что необходимо внести новое поля (рис. 15). Новое поле создает некое действие применительно к геометрическим объектам, можно сказать, что это движение. Тогда решение задачи свелось к нахождению какого-либо движения для ответа на поставленный вопрос задачи. В книге «Математическая шкатулка» [49] предлагается движение, заключающееся в повороте квадрата, тогда общая часть двух квадратов будет правильным восьмиугольником. При использовании элементов вепольного анализа решение задачи сводиться к нахождению третьего вещества или нового поля, что значительно легче решения первоначальной задачи. Начальные рассуждения на вепольном языке кажутся слишком «затянутыми» и затруднительными, но, как показывает практика, при хорошей отработке элементов вепольного анализа их использование при решении задач происходит уже «подсознательно».2.4. Метод переизобретения знаний Пазработка осуществлена на основе статьи [62]ТРИЗ является продолжением диалектики Аристотеля и Гегеля и дополняет их конкретными инструментальными методами преодоления противоречий. Поэтому ТРИЗ позволяет более описывать, а главное - проектировать процессы развития различных систем [30]. Таким образом, изучая любую систему, можно более глубоко понять эту систему и одновременно формировать творческое мышление, если рассматривать ее как результат развития системы-предшественницы, преодоления в ней противоречий в соответствии с теми закономерностями, которые теперь известны, как законы, принципы, приемы, стандарты ТРИЗ [40]. Один из вариантов такого рассмотрения - переизобретение знаний с помощью ТРИЗ.Объектами изучения в математике являются глубинные закономерности нашего мира, выраженные в математических понятиях и правилах. И те, и другие, согласно ТРИЗ, а также философским наукам системологии и диалектике, являются развивающимися системами. Рассмотрим возможности их переизобретения в учебном процессе.При использовании элементов ТРИЗ-педагогики при изучении школьной математики путем переизобретения знаний вполне возможно, если переизобретать не закономерности, а описывающие их понятия и правила.Пример 9. Рассмотрим совокупность равенств типа , и т. д., т. е. таблицу умножения. Из истории арифметики известно, что раньше людям было известно сложение, а уже затем умножение. У операции сложения была проблема, связанная, например, с определением площадей. Необходимо было многократно складывать одинаковые слагаемые. Переизобрести с учащимися операцию умножения можно, применяя к сложению закон развертывания-свертывания (в части свертывания) и принцип объединения. Многократные операции сложения одинаковых слагаемых можно объединить, свернуть в операции умножения.Пример 10. Когда-то людям были известны только целые числа. Но их оказывалось недостаточно, когда было необходимо измерять доли каких-либо объектов. В результате стихийного применения принципа дробления люди создали идею дробей. Развитие дробных чисел можно рассматривать и дальше. Первые дроби у древних (унция и т. п.) были очень неудобны, особенно при арифметических операциях. Проблема была решена с использованием для записи дробных чисел их предшественников - целых чисел - стихийным применением закона перехода в бисистему. Современная простая дробь - это бисистема из числителя и знаменателя. Смешанные числа - это полисистемы из целой части, числителя и знаменателя. Проблема сложения и вычитания простых дробей с разными знаменателями была решена путем стихийного применения принципа эквипотенциальности (приведение к общему знаменателю). Все же у простых дробей правила выполнения арифметических операций, хотя и достаточно понятны, но не совсем просты, отличаются от правил операций с целыми числами. Проблема была решена стихийным применением к целым числам принципа инверсии. В десятичных дробях вес разрядов справа от запятой (по степеням 10) - отрицательный, в противоположность положительному весу разрядов слева от запятой.Пример 11. Отрицательные числа получаются из положительных применением принципа инверсии.Пример 12. Иррациональные числа получаются из рациональных применением принципа непрерывности полезного действия: числа занимают непрерывно всю числовую ось.Пример 13. Комплексные числа получаются из вещественных применением принципа перехода в другое измерение: от числовой прямой к числовой комплексной плоскости.Пример 14. Переменные получаются из постоянных применением принципа динамичности.Пример 15. Функции одной переменной получаются из одиночных переменных по закону перехода в бисистему.Пример 16. Функции нескольких переменных получаются из одиночных переменных по закону перехода в полисистему.Пример 17. Создание Ньютоном и Лейбницем интегрального исчисления - классический пример перехода на микроуровень.Таким образом, можно аналогично рассуждать в отношении других математических объектов, используя метод переизобретения знаний. Использовать данный метод можно на факультативных занятиях. Учащаемся наглядно показывается, как их уровень знакомства с математикой соответствует общим законам развития систем.2.5. Методы технического творчества при обучении школьников математикеВ конце первой главы в инструменты ТРИЗ-педагогики мы включили методы мышления, не относящиеся собственно к ТРИЗ. По сравнению классическими инструментами ТРИЗ методы технического творчества лучше отработаны при использовании их в учебном процессе [22, 42, 67, 68, 70] начиная с начальной школы [20, 28, 29, 87], но об использовании данных методов при обучении школьников математике литературы не встречается, хотя они являются ценным дидактическим материалом. К основным методам научного творчества можно отнести: метод проб и ошибок; метод морфологического анализа; мозговой штурм; синергетику.Данные методы достаточно легко можно применять при решении учебных математических задач.Пример 18. В каком случае произведение двух натуральных чисел дает четное число? Используем метод проб и ошибок, переберем все возможные варианты четности двух чисел. И сделаем соответствующий вывод. В альтернативу можно показать применение идеального конечно результата ТРИЗ, сформулировав, что произведение данных чисел дало четной число , тогда вывод о необходимости четности хотя бы одного из них достаточно логичен.При решении многих математических задач при использовании метода проб и ошибок другого математического аппарата рассуждений, учащиеся осознанно усваивают ценность математики. Пример 19. Укажите способы определения высоты здания без сложных приборов.Коллективное (групповое) решение этой задачи методом мозгового штурма приводит к разнообразным выводам. Наиболее оптимальное и эффективное из них, как правило, попутно подводит к изучению темы «Подобные треугольники» [76]. Рассмотрим два из возможных вариантов решения. Первый вариант предполагает, что человек AB стоит и смотрит на здание ED (рис. 16). Измерив расстояния AD и AO, зная свою высоту AB, можно рассмотреть подобные треугольники BEC и ОВА, из соотношения сторон которых можно узнать искомое.Второй вариант решения предполагает, что человек смотрит из точки О на некоторый предмет AB, высоту которого мы можем измерить, например, палку (рис. 17). Тогда из подобия тех же треугольников, что и в первом варианте с легкостью находится искомое. Другие контрольные ответы заключается с применением тени, зеркала и построение высотомеров [59].Пример 20. В кафе встретились три друга: скульптор Белов, скрипач Чернов и художник Рыжов. «Замечательно, что один из нас имеет белые, один черные и один рыжие волосы, но ни у одного из нас нет волос того цвета, на который указывает его фамилия», - заметил черноволосый. «Ты прав», - сказал Белов. Какой цвет волос у художника? Для решения этой задачи можно воспользоваться морфологическим анализом и составить морфологический ящик, используя который решение становиться более наглядным.Морфологический ящик
Интеграция в общеобразовательные дисциплины методологии творчества, базирующейся на ТРИЗ и других методах поиска нестандартных решений, ставящих своей целью развитие творческого воображения и фантазии, формирование творческого системного мышления, выявление и развитие творческих способностей школьников, овладение способами, необходимыми для творческой деятельности, позволит повысить движущую силу развития творческого потенциала - интерес школьников к учебной работе, обеспечит самостоятельный поиск необходимой дополнительной учебной информации. В этой главе мы адаптировали некоторые инструменты ТРИЗ для использования их на уроках математики. Приемы мышления, используемые в математике [38]: абстрагирование и конкретизация, обобщение и специализация, аналогии, можно сравнить с аналогичными принципами используемыми в ТРИЗ: принципом перехода в надсистему, принципом перехода в подсистему и принципом копирования. Рассмотренные в этой главе способы по применению ТРИЗ-педагогики на уроках математики могут помочь решить проблему по формированию продуктивного мышления (креативность + системность) [83] у учащихся в школе на уроках математики. Рассмотренные способы учат как надо действовать для того, чтобы получить желаемый продукт, результат, какие нормы надо соблюдать, чтобы получить продукт гарантированного качества. Кроме того, они дают возможность интегрировать часть полученной учебной информацию на уроках математики с гуманитарными и естественными наукам в единую систему знаний. Глава 3. Описание и анализ опытно-экспериментальной работы В рамках выпускной квалификационной работы был разработан и апробирован курс «Тренинг креативного мышления» на основе внеклассных занятий по математике в средней школе, базирующийся на инструментах ТРИЗ-педагогики. 3.1. Психологические аспекты сущности креативностиЧтобы перейти от репродуктивного обучения к творческому, деятельность … должна организовываться таким образом, что бы она приводила к получению учеником качественно новых результатов, как в обучении, так и в его развитии.А. В. Хуторской Понимание сущности творчества и лежащих в его основе способностей - вопрос, по которому существует множество разноречивых психологических, педагогических и философских теорий мнений и концепций [33, 42, 81].Рассмотрим некоторые психологические аспекты, которые важны для понимания сущности предлагаемого тренинга развития креативности (от анг. create - творить, создавать).Творчество в широком смысле рассматривается как деятельность в ситуации неопределенности, направленная на получение результатов, обладающей объективной или субъективной новизной. В этом плане она не обязательно связанна с такими видами деятельности, традиционно относимыми к «творческим», как рисование, сочинение музыки и стихов, и т.п. Оно проявляется, когда приходиться действовать в ситуациях неопределенности, отсутствия четких алгоритмов, неизвестности сути и способов решения, встающих перед человеком проблем, непредсказуемо меняющихся условий.Креативность как система творческих способностей рассматривается в психологии в нескольких ракурсах. Под ней понимают:· систему личностных качеств;· характеристику интеллектуальной сферы (Айзенк, 2004);· самостоятельное качество мышления, не сводимое к интеллекту в его традиционном понимании (Гилфорд, 1967; Пономарев, 1988).Существуют различные определения креативности, в которых акцент может делаться на:· продукты, создаваемые благодаря ей: креативность как способность порождать нечто новое, необычное, оригинальное;· процессы: креативность как особая разновидность творческого мышления, высокоразвитое воображение, эстетическое мировосприятие и т.п. · личностные качества: креативность как открытость новому жизненному опыту, независимость, гибкость, динамичность, оригинальность, самобытность личности;· внешние условия: креативность как способность продуктивно действовать в ситуациях с высокой степенью неопределенности, где отсутствует заранее известные алгоритмы, гарантированно ведущие к успеху.Так или иначе, под креативностью понимается некая противоположность обыденности, стандартности, комфортности (податливости внешнему влиянию), а также восприятие человеком себя как «субъекта» действительности [45]. Под творческими способностями мы будем понимать характеристики, которые позволяют продуктивно осваивать деятельность, направленную на получение результатов, обладающих новизной.Таким образом, креативность включает:1) интеллектуальные предпосылки творческой деятельности, позволяющие создавать нечто новое, ранее не известное (творческие способности в узком смысле этого понятия), а также предварительный набор знаний и умений, необходимых для того, чтобы это новое создавать;2) личностные качества, позволяющие продуктивно действовать в ситуациях неопределенности, выходить за рамки предсказуемого, проявлять спонтанность;3) «метатворчество» - жизненную позицию человека, подразумевающую отказ от шаблонности, стереотипности в суждениях и действиях, желание воспринимать и создавать нечто новое, изменяться самому и изменять мир вокруг себя, высокую ценность свободы, активности и развития.Согласно концепции Дж. Гилфорда и Э. Торренса, креативность рассматривается как самобытная разновидность мышления - так называемое дивергентное («расходящееся, идущее в разных направлениях») мышление (рис. 18), которое опускает варьирование путей решения проблемы, приводит к неожиданным выводам и результатам [12]. Такое мышление противопоставляет конвергентному («сходящемуся»), (рис. 19), направленному на поиск единственно правильного решения на основе анализа множества предварительных условий (Дружинин, 1999). Дивергентное мышление не ориентируется на известное или подходящие решение проблемы, а проявляется в том случае, кода проблема еще не раскрыта и неизвестен путь ее решения.Приведем обобщенную сравнительную характеристику разновидностей мышления, соответствующих традиционному, академическому интеллекту и ориентированных на творческий поиск [32].Завершающая стадия - выбор верного варианта решения проблемы, отсечение всех остальных.Стадия сбора информации - варианты анализируются, критически оцениваются, ошибочные отсекаются, число альтернатив сокращается.Начальная стадия - предполагаются различные варианты способов решения проблемы.Завершающая стадия - критическая оценка предложенных вариантов, выбор наиболее приемлемых.Стадия сбора информации - максимальное расширение видения проблемного поля, генерирование идей о других возможных способах решения проблемы (без критической оценки этих идей)Начальная стадия - число видимых способов решения проблемы относительно не велико. Задача - собрать дополнительную информацию, позволяющую расширить представления об этих способа. 3.2. Ключевые психологические идеи тренингаСовременный мир стремительно меняется. И на учебе, и на работе, и в быту человек раз за разом сталкивается с новыми ситуациями, в которых велика степень неопределенности, нет заранее известных способов действий, гарантированно ведущих к успеху. В рамках выпускной квалификационной работы разработан курс «Тренинг креативного мышления», на основе внеклассных занятий по математике, призванный помочь научить справляться с такими ситуациями, опираясь на свои творческие способности.При разработке курса были использованы положение о развитии креативности учащихся (Дж. Гилфорд, Е. Торренс, Е. Е. Туник) и о возрастной динамике креативности (Д. Б. Богоявленская, В. Н. Дружинин, Е. Торренс, В. С. Юркевич).Главных проявлений креативности всего два:1) возможность продуктивно действовать в ситуациях новизны и неопределенности, при недостатке информации, когда нет заранее известных способов действий, гарантированно ведущих к положительному результату;2) возможность создавать какой-либо продукт, обладающий новизной (субъективной или объективной) и оригинальностью.Отметим ключевые идеи, на которых базируется программа тренинга.· Поле для развития креативности - это не только виды деятельности, традиционно относимые к творческим (рисование, игра на гитаре и т.п.), но и любые жизненные ситуации, в которых присутствуют новизна и неопределенность.· Креативность - это не единичная способность, а комплекс особенностей интеллекта и качеств личности, а также общая жизненная позиция человека. Она не сводится ни к какому-то единичному психологическому качеству, ни к специальным творческим способностям (художественным, музыкальным и т.п.).· Креативности не специфична, она не связана жестко с конкретными видами деятельности и может активизироваться в самых разных ситуациях. Ее тренировка в каком-то одном виде деятельности ведет к тому, что она начинает ярче проявляться и в других видах.· Креативность в той или иной степени свойственна всем людям, а не является уникальным психологическим качеством, «печатью гения». Конечно, степень ее вырожденности существенно различается, однако у большинства людей она вполне достаточна, чтобы творчески подходить к решению жизненных проблем. Если этого не случится, то проблема обычно не в отсутствии творческих способностей, а в их недостаточной «настройке», неумении им пользоваться.· Креативность управляема и развиваема - ее можно активизировать и тренировать, в том числе и посредством специально разработанного материала на основе общеобразовательных дисциплин. Предлагаемый тренинг как раз и выступает способом тренировки креативности на основе кружковых занятий по математике.3.3. Тренинг креативного мышленияСреди целей, предъявляемых к современному школьному образованию, выделяется формирование личности, способной решать поставленные перед ней задачи в условиях рыночной экономики, в частности, быстро находить наиболее оптимальное и эффективное решение преодолеваемой проблемы. Такая цель направлена на реализацию внутреннего потенциала школьника, развитие творческого начала, его креативности. А также, все более остро обозначаются проблемы интеграции в образовании, раскрывающиеся в фундаментальном изучении дисциплин и, в то же время, межпредметных связях с другими образовательными областями. Однако вопросы организации учебно-воспитательного процесса, в котором на основе интегрированного подхода подготавливается выпускник школы, обученный основным практикам жизнедеятельности общества, затрагиваются мало, с позиции его необходимости, а не конкретной реализации [75], что подчеркивает актуальность тренинга.В разработанном курсе «Тренинг креативного мышления» предлагается одна из возможных реализаций обозначенных тенденций, при которых учебно-воспитательный процесс направлен на развитие креативности ученика в интегративной связи математики с другими образовательными областями [76].Целью курса является содействие развитию креативной мыслительной деятельности средствами математики. Концепция обучения базируется на использование инструментов ТРИЗ-педагогики. Тренинг разбит на девять взаимосвязанных занятий: метод проб и ошибок; мозговой штурм; обратный мозговой штурм; морфологический анализ; идеальный конечный результат; отрицание или взгляд со стороны; принцип перехода в другое измерение; переход в надсистему; переход в подсистему (см. Приложение 1). |
РЕКЛАМА
|
|||||||||||||||||||||||||||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |