|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Методика изучения элементов математического моделирования в курсе математики 5-6 классовМетодика изучения элементов математического моделирования в курсе математики 5-6 классов28 Министерство образования Российской Федерации Вятский государственный гуманитарный университет Кафедра математического анализа и методики преподавания математики Курсовая работа Методика изучения элементов математического моделирования в курсе математики 5-6 классов (по уч. Г.В. Дорофеева, Л.Г. Петерсон) Работу выполнила студентка математического факультета (М-41) Беляева Екатерина Анатольевна. Научный руководитель: Крутихина М.В. Киров - 2006 Содержание
Знак "+" обозначает наличие соответствующего компонента в условии, знак "-" - отсутствие. Знак "-" в графе "сюжет" характеризует задачи, в которых требуется подобрать объекты по заданным величинам и (или) значениям. Знак "-" в графе "величины" предполагает выделение системы необходимых исходных величин в условиях лишних или недостающих данных. Комбинации "+", "+", "+" и "-", "-", "-" не рассматриваются как не представляющие интереса. Кроме того, задачи внутри одного типа могут отличаться и формой задания: таблица, диаграмма, чертёж, краткая запись и т.д. Приведём примеры, соответствующие выделенным типам. Велосипедист и пешеход вышли из посёлка в одно и то же время и пошли в город по одной и той же дороге. Велосипедист движется со скоростью…км/ч, пешеход - …км/ч. Какое расстояние будет между ними через 1,5 ч? Из годового отчёта школы известно следующее: число учащихся в начале учебного года 642 прибыло в течение года 19 переведено в параллельные классы 4 выбыло из школы 9 осталось на повторное обучение 2 закончило школу 78 Сколько учащихся осталось по окончании учебного года? в) Составить задачу по краткой записи:
г) Составить задачу по числовому выражению: ) д) Составить задачу с величинами расстояние, скорость, время. е) В первом вагоне трамвая ехало a человек, а во втором b человек. На остановке из второго вагона вышло c человек. Какое из выражений показывает, сколько человек осталось во втором вагоне: а) a + b в) b - c б) (a + b) - c г) a + (b - c) Подставь вместо a, b, c разумные значения и реши задачу. Говоря об обучении действию выбору точности числовых значений, соответствующих смыслу задачи, не имеется в виду формирование понятий и умений, связанных с приближёнными вычислениями. Речь идёт о привлечении внимания учащихся к тому, что любая математическая модель имеет погрешность. При решении задач в жизни редко получают круглые ответы. Поскольку, например, считать массу краски для пола с точностью до грамма неразумно, то необходимо уметь округлять числовые данные в соответствии со смыслом задачи. Формирование данного действия должно начинаться уже в процессе знакомства учащихся с единицами измерения, что происходит ещё в начальной школе. Целесообразно при изучении всех единиц рассматривать, какие объекты на практике измеряются данной единицей. Например. При изготовлении этикетки для спичечного коробка следует знать размеры прямоугольника, на который будет наклеиваться этикетка. В каких единицах измерения следует измерять длину и ширину прямоугольника. При обучении округления результата в соответствии со смыслом задачи могут использоваться задания, требующие округления, но без указания точности округления. Для того, чтобы показать учащимся необходимость округления, можно использовать задачу: "Сколько нужно заплатить за половину буханки хлеба, если целая буханка стоит 6р.75 к.?" Приведём примеры задач, которые также могут быть использованы для формирования рассматриваемого действия. Задача 1. Тракторная бригада должна по плану вспахать 620 га земли. Но она сумела выполнить задание на 144%. Сколько гектаров земли вспахала бригада? Задача 2. Сенохранилище имеет форму прямоугольного параллелепипеда с измерениями 16,6 м, 5,2 м, 4 м. Сколько тонн сена может поместиться в хранилище, если 1 м3 сена имеет массу 54 кг. При решении задач на практике приходится округлять не только результат, но и исходные числовые данные. Это может происходить, например, при использовании табличных данных, где указана точность более высокая, нежели требуется по смыслу задачи. Средством обучения выбору точности исходных данных могут служить задачи: а) требующие практических измерений; б) связанные с чтением и построением графиков; в) связанные с избыточной точностью числовых данных. Например, Задача 1. Найти площадь классной доски. Задача 2. Тюк сена спрессованный пресс-подборщиком, имеет массу 40 кг и размеры 9040,355 см. Найдите плотность спрессованного сена. Задача 3. Туристы сначала ехали на автобусе со скоростью …км/ч, а потом на вёсельных лодках со скоростью …км/ч. Всего за 5 ч они проехали 150 км. Сколько времени ехали туристы на автобусе? В этой задаче требуется самостоятельно вставить вместо точек реальные значения скоростей автобуса и вёсельной лодки. Желательно, чтобы учащиеся не старались подобрать такие значения, которые дают целочисленный ответ, а округлили результат по смыслу. В процессе решения предложенных и аналогичных задач учащиеся должны усвоить, что выбор точности зависит от цели, с которой решается задача, и от качеств самого измеряемого объекта. При ответах школьники опираются на свои представления о реальных объектах и процессах, описанных в задаче. Действия оценки возможности получения числовых значений величин на практике тесно связано с действием оценки полноты исходной информации и введения необходимых числовых значений: формирование первого возможно, главным образом, в процессе формирования второго. Следовательно, для того, чтобы сделать больший акцент на оценке возможности получения значений величин на практике, должны использоваться задачи, при решении которых непосредственный выбор величин, необходимый для отыскания искомой, у учащихся затруднений не вызывал. Например. Задача 1. Как приблизительно измерить расстояние, которое вы проходите от дома до школы? Задача 2. В сарае требуется сделать кирпичный пол в один слой, толщина которого равна наименьшему размеру кирпича. Как определить, сколько штук кирпича потребуется? Все вышеперечисленные задачи направлены на формирование элементов прикладного стиля мышления учащихся уже в 5-6 классах. 3. Анализ учебника "Математика" для 6 класса Г.В. Дорофеева, Л.Г. Петерсон с точки зрения наличия задач для формирования прикладных уменийНа основе выделенных действий, характерных для этапов формализации и интерпретации, проанализируем учебник Г.В. Дорофеева, Л.Г. Петерсон с точки зрения наличия задач, применяемых для формирования прикладных умений учащихся 6 класса.Первое действие - замена исходных терминов выбранными математическими эквивалентами. Обучение этому действию может происходить при формировании понятий, например, таких как, окружность, сфера, прямоугольный параллелепипед.При изучении окружности, круга и их свойств в учебнике используются задачи, в которых используются такие термины как "окружность колеса", "обороты колеса", "арена цирка", "циферблат часов". Например.№549 (2) (часть 3). Сколько оборотов сделает колесо на участке пути в 1,2 км, если диаметр колеса равен 0,8 м? Число округли до целых.№ 566 (а) (часть 3). Чему равна площадь циферблата часов, если длина минутной стрелки равна 4,5 см. Число округли до целых.№737 (часть 3). Арена цирка имеет длину 40,8 м. Найди диаметр и площадь арены. Число округли до целых.Прямоугольный параллелепипед является математическим эквивалентом "аквариума", "печи". Например.№547 (часть 3). Имеется два аквариума с измерениями 453250 см и 503245 см.а) На изготовление какого из двух аквариумов потребовалось больше стекла?б) Аквариумы заполнили водой так, что уровень воды в первом аквариуме ниже верхнего края на 10 см, а во втором - на 5 см. В каком аквариуме больше воды?Также к этой группе относятся задачи №№ 341, 342, 549 (4), 562, 566 (б) (часть 3).Можно сделать вывод, что в этом учебнике в текстах задач приводится недостаточное количество примеров аналогов окружности, шара, прямоугольника, параллелепипеда и других геометрических фигур и тел на практике.Также при обучении действию замены исходных терминов выбранными математическими эквивалентами применяются задачи, в которых требуется замена одной единицы измерения другой более мелкой и наоборот. Таких задач в учебнике очень много, но в основном в них требуется переводить километры в метры, метры в сантиметры, минуты в часы, что не вызывает больших сложностей у школьников. Например.№ 225 (1) (часть 2). Чтобы связать шарф длиной 1,4 м, нужно 350 г шерсти. Сколько шерсти потребуется, чтобы связать шарф такой же ширины длиной 180 см?№227 (часть 2). Подводная лодка, идя со скоростью 15,6 км/ч, пришла к месту назначения за 3 ч 45 мин. С какой скоростью она должна была идти, чтобы пройти весь путь на 45 мин быстрее.Сюда же относятся задачи №№ 189 (2), 190 (2), 191 (2), 198, 199, 201, 209, 210, 212, 223, 233, 247, 305, 306, 334 (часть 1); №№ 44, 49, 125, 203, 204, 292, 293 (1), 322, 372, 373, 551 (часть 2); №№ 116, 130 (а), 132,133, 154, 195, 223, 228, 304, 433-436, 444, 465, 466, 467, 499, 563, 633, 667, 678-680, 683, 700, 706, 717, 720, 727, 728, 738, 764, 767 (б) (часть 3).Только в одной задаче используется единица измерения времени - неделя.№ 285 (2) (часть 1). Средняя температура воздуха за неделю равна 18,6, а за шесть дней без воскресенья - 18,4. Какой была температура воздуха в воскресенье?Таким образом, необходимо увеличить количество задач, в которых требуется перевод единиц, не входящих в известные системы мер.Рассмотрим наличие задач с точки зрения формирования умения оценивать полноту исходной информации и вводить при необходимости недостающие числовые данные. Выше были выделены типы задач, которые необходимо применять при обучении данному умению. Проанализируем, достаточно ли в учебнике задач, соответствующих этим типам.Первый тип соответствует комбинации "+", "+" "-" и характеризуется наличием сюжета, величин и отсутствием значений величин. В основном они представлены в заданиях, названных в учебнике "Блиц-турнир". Сюда относятся такие задачи как:№ 58 (б - д) (часть 3). "Блиц-турнир".б) При продаже товара на b руб. получили 8% прибыли. Какова себестоимость товара?в) До снижения цены футболка стоила x руб., а после снижения - y руб. На сколько процентов снизилась цена?г) Зарплату рабочего, равную n руб., повысили сначала на 10%, а потом ещё на 40% от новой суммы. Какой стала зарплата после второго повышения?д) Цену на компьютер снизили сначала на 20%, а потом ещё на 50% от новой цены. После этого компьютер стал стоить k руб. Какой была его первоначальная цена?В учебнике также представлены следующие задания такого типа: №№ 66 (1 - 2), 107, 200, 222, 228, 443 (часть 1); 47 (1,3,4), 53 (1,3), 83, 130 (1,3), 136, 286, 287, 329, 337, 374, 453 (часть 2); 10, 16, 24, 148, 268, 319, 367 (б, в, г, д, е), 729.Второй тип характеризуется наличием сюжета, значений величин и отсутствием величин во втором. Это комбинация "+", "-", "+". Задач такого типа в учебнике [6] нет.Третий тип соответствует комбинации "-", "+" "+". К этому типу относятся задания, в которых нужно составить задачу по схеме или краткой записи. В учебнике Г.В. Дорофеева, Л.Г. Петерсон такие задачи представлены в следующем виде:№ 197 (часть 1). Составь по схемам задачи и найди неизвестные величины (dt -расстояние между объектами через t ч после выхода):40 км/ч 80 км/ч28 tвстр. = 2,5ч? км s =? d1,5 =?110 км/ч 70 км/ч28 t = 2 ч150 км tвстр. =? d2 =?? км/ч 9 км/ч28 t = 1,4 ч =?? км d1,4 =? d3,2 =?4 км/ч 12 км/ч28 t = 0,5 ч6 км d0,5 =?В основном нужно составить задачи на движение в различных направлениях согласно указанным в схемах данным. К этому же типу относятся задачи №№ 215 (часть 1); 387 (часть 2); 131, 524, 627 (часть 3).Четвёртый тип характеризуется отсутствием сюжета и величин и наличием значений, т.е. это такие задания, в которых нужно составить задачу по числовому выражению, уравнению и т.д. В учебнике [6] к этому типу относятся задачи вида:№115 (часть 1). Придумай 3 задачи, решением которых является выражение: (a - a: 4): 2.№424 (часть 2). Придумай ситуацию, математической моделью которой может служить данное выражение, и найди ответ:а) (-9) + (+4); б) (+6) + (+3);в) (-5) + (-2); г) (-1) + (+7).Аналогичные действия нужно выполнить в № 427.№ 496 (часть 2). Составь по данной математической модели задачу и реши её:1) 0,48: (1,6 - 2x) + 5,2 = 6 2) 2 (x - 1,8) = 2/3 x.Пятому типу соответствует комбинация "-", "+", "-", где нужно составить задачу с указанными величинами, например, расстояние, скорость, время; стоимость, цена, количество и др.№ 766 (часть 3). Как найти: а) процент от числа; б) число по его проценту; в) процентное отношение двух чисел? Придумай и реши задачи на эти правила. Затем эти же задачи реши методом пропорций. Какой способ ты считаешь более удобным? Почему?В учебнике [6] отдельно выделяются задания, в которых нужно составить задачу о "доходах" и "расходах" по заданному выражению.Например,№ 220 (часть 2). Придумай по выражению задачу о "доходах" и "расходах" и найди ответ:1) (+3) + (-7);2) (-5) + (-8);3) (-1) + (-4).Аналогичные этому №№ 221, 314 (часть 2).К 6 типу задач относятся задачи, которые характеризуются только наличием сюжета. Это задачи вида:№ 58 (а) (часть 3).а) В одном классе a человек, а в другом - на 20% больше. Сколько человек в двух классах?К этому же типу относятся №№ 69, 288, 415 (часть 1); 47 (2,5,6), 53 (2), 130 (2,4) (часть 2); 367 (а), 778 (часть 3).Можно сделать вывод, что последние 5 типов задач недостаточно полно представлены в учебнике Г.В. Дорофеева, Л.Г. Петерсон. Лишь задачи 1 типа, часто встречаются в номерах учебника. Необходимо включить в обучение задачи, соответствующие комбинации "+", "-", "+", которых вообще нет в данном учебнике.Проанализируем наличие задач в учебнике с точки зрения обучения выбору точности числовых значений, соответствующих смыслу задачи. Это задачи требующие округления, но без указания точности округления, исходных и (или) полученных данных в соответствии со смыслом задачи. Задачи этого типа представлены следующими заданиями:№ 56 (2) (часть 1). Длина комнаты 4,2 м, ширина - 3,6 м, а высота - 3,5 м. Комнату надо оклеить обоями. Сколько рулонов обоев надо купить, если в каждом рулоне 15 м при ширине 0,6 м, размеры окна 2 м 1,5 м, а на отходы при поклейке надо предусмотреть 20% расхода обоев.№79 (часть 1). Пусть в некоторые сутки продолжительность дня x ч, а продолжительность ночи y ч. Запиши формулу, выражающую зависимость y от x. Какие значения может принимать x? Заполни таблицу и построй график этой зависимости для всех допустимых значений x.
№ 30 (часть 2). Расстояние от Москвы до Бреста равно примерно 1100 км. Изобразите шоссе от Москвы до Бреста на тетрадном листе в виде отрезка, подобрав удобный масштаб. №434 (часть 2). В автохозяйстве для каждой модели автомобилей установлена норма износа. По "Волгам" она составляет 11,1% в год. Каков срок службы этого автомобиля? В основном в учебнике обучение выбору точности числовых значений реализуется при построении различных графиков зависимостей. К этому типу задач относятся также №№ 55, 77-80, 92, 155, 162, 280, 317, 468, 473 (часть 1); 33, 37, 38, 50, 51,81, 84, 113, 140, 141-144, 154, 155, 173, 175, 176, 178, 189, 190, 265, 288, 374 (часть 2); 146, 155, 158, 198 (часть 3). Задачи, которые должны использоваться при обучении действию оценки возможности получения результата, представлены в учебнике в очень небольшом количестве. К ним относятся такие задачи, как: № 336 (часть 1). В классе 20 учеников. Из них английский язык изучают 15 человек, немецкий - 10, и ещё 1 человек изучает французский язык. Возможно ли это? № 49 (часть 2). На туристической карте масштаб оказался оторванным. Можно ли его восстановить, если известно, что расстояние от сельской почты до окраины села (по прямой дороге) равно 3,2 км, а на карте это расстояние изображено отрезком длиной 4 см? № 368 (б) (часть 3). В городской думе 80 депутатов, среди которых 4 независимых депутата, а остальные представляют интересы трёх партий. Число депутатов от первой партии на 20% больше, чем от второй, а число депутатов от второй партии составляет 62,5% числа депутатов третьей. Может ли какая-либо партия заблокировать принятие решения, для которого требуется квалифицированное большинство голосов (не менее 2/3) всех депутатов? Итак, был проанализирован учебник "Математика" для 6 класса Г.В. Дорофеева, Л.Г. Петерсон с точки зрения наличия задач, необходимых для обучения действиям, характерным для этапов формализации и интерпретации. Были получены следующие результаты: не хватает задач с примерами аналогов математических понятий, используемых на практике; недостаточно задач, в которых требуется перевод единиц, не входящих в известные системы мер; общее количество задач, необходимых для реализации второго действия, предлагается в достаточном количестве; очень мало задач, которые должны использоваться для обучения действию оценки возможности получения результата. ЗаключениеВ процессе проведённого исследования были получены следующие результаты:определены понятия "модель" и "математическое моделирование", выделены основные идеи и этапы метода математического моделирования;выделены дидактические функции преподавания математического моделирования в школе;обосновано значение изучения элементов математического моделирования на ранних этапах обучения, а именно в 5 - 6 классах;выделены основные действия, характерные для этапов формализации и интерпретации, и разработана методика обучения элементам математического моделирования в 5 - 6 классах;проанализирован учебник "Математика" для 6 класса Г.В. Дорофеева, Л.Г. Петерсон с точки зрения наличия задач для формирования прикладных умений и сделаны соответствующие выводы.Результаты проведенного исследования позволяют сделать следующие выводы:включение моделирования в содержание учебных предметов необходимо для ознакомления учащихся с современной научной трактовкой понятий модели и моделирования, овладением моделированием как методом научного познания и решения практических задач;следует включить изучение элементов математического моделирования в содержание уроков не в 7 - 9 классах, а на ранних этапах обучения, т.е. уже в 5 - 6 классах или ещё раньше. Это обосновано тем, что у учащихся создаются предпосылки для более осознанного изучения математики, формирования прикладного стиля мышления и повышения интереса к самой науке математике.Литература1. Баврин И.И. Начала анализа и математические модели в естествознании. // Математика в школе, 1993, №4. 2. Блох А.Я., Гусев В.А. и др. Методика преподавания математики в средней школе. - М.: Просвещение, 1987. 3. Болтянский В.Г., Пашкова Л.М. Проблема политехнизации курса математики. // Математика в школе, 1985, №5. 4. Возняк Г.М. Прикладные задачи в мотивации обучения. // Математика в школе, 1990, №2. 5. Гнеденко Б.В. Математика и математическое образование в современном мире. - М.: Просвещение, 1985. 6. Дорофеев Г.В., Петерсон Л.Г. Математика, 6 класс. Часть 1, 2,3. - М.: "Баласс", "С-инфо", 2002. 7. Дорофеев Г.В., Тараканова О.В. Постановка текстовых задач как один из способов повышения интересов учащихся к математике. // Математика в школе, 1988, №5. 8. Канин Е.С. Аналитическое моделирование текстовых задач. // Функции задач в обучении математике. - Киров - Йошкар-Ола, 1985. 9. Канин Е.С. Учебные математические задачи. - Киров: Издательство ВятГГУ, 2004. 10. Практикум по преподавания математики в средней школе. Под ред.В.И. Мишина. - М.: Просвещение, 1993. 11. Серикбаева В. Межпредметные связи как одно из важнейших средств формирования мировоззрения учащихся. // Современные проблемы методики преподавания математики. - М.: Просвещение, 1985. 12. Терешин Н.А. Прикладная направленность школьного курса математики. - М.: Просвещение, 1990 13. Тесленко И.Ф. Формирование диалектико-материалистического мировоззрения учащихся при изучении математики. - М.: Просвещение, 1979. 14. Тикина Г.П. Методические вопросы использования задач как средства формирования познавательного интереса к математике. // Функции задач в обучении математике. - Киров - Йошкар-Ола, 1985. 15. Тихонов А.Н., Костомаров Д.П. Рассказы о прикладной математике. - М.: Наука, 1979. 16. Фридман Л.М., Турецкий Е.Н. Как научиться решать задачи. - М.: Просвещение, 1984. |
РЕКЛАМА
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |