|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Совершенствование математических способностей в коррекционной школеСовершенствование математических способностей в коррекционной школеПлан Введение……………………………………………………………………….... Глава 1. Особенности развития младших школьников в специальной школе………………………………………..… 1. Физиологические, психические и психолого– педагогические особенности развития младших школьников…………………………………………………….... 2. Специфика развития математических способностей Детей олигофренов……………………………..………….…. Глава 2. Методика формирования вычислительных навыков в специальных коррекционных школах……………………… Заключение………………………..…………………………………………... Литература…………………………………………………………………….. Введение Проблема организации обучения, максимально учитывающего различия в развитии и способностях учащегося, - одна из наиболее острых в теории педагогики и практики школы. Опыт показывает, что несмотря на большое внимание, которое уделяется совершенствованию содержания образования, разгрузки школьных программ, оснащению кабинетов современной техникой, улучшению условий труда учителей, учить всех и учить хорошо при существующем, традиционном построении учебного процесса невозможно. Одним из резервов, позволяющим поднять работу школы на новый качественный уровень является индивидуализация обучения. Разработка действенных средств индивидуализации важна для всех звеньев школы, но особенно актуальна она для системы начального обучения, где закладывается фундамент школьной успеваемости, формируются основные стереотипы учебной деятельности, воспитывается отношение к учебному труду. Большую общественную тревогу вызывает сегодня крайне неблагоприятное положение в школе детей, которые, едва переступив школьный порог, попадают в категорию отстающих. Отставание детей в учении уже на начальном этапе их обучения оказывается одной из главных причин низкой педагогической, социальной и экономической эффективности школьного воспитания. Действенная забота о здоровье и гармоничном развитии детей предполагает создание адекватных условий обучения для каждого переступившего школьный порок ребёнка. Создание таких условий, учитывающих индивидуальные особенности, общие и специальные способности школьников, - важнейший аспект программы охраны детства, обязательная предпосылка фактической реализации права каждого человека на полноценное образование. В системе народного образования утвердилась разветвлённая сеть специальных школ: вспомогательные школы и школы – интернаты для умственно отсталых детей, школы для глухих, слабослышащих, слепых, слабовидящих; для детей с нарушениями опорно-двигательного аппарата, с речевыми расстройствами при сохранном слухе и др. Одной из возможных форм педагогической помощи таким детям является организация в структуре специальных коррекционных школ и создания в них особых классов, программ которые ставят свои задачи по укреплению здоровья детей, стимулировании их развития, коррекции имеющихся в развитии отклонений и приобретает в ходе реализации этих функций отличающие его специфические особенности. Учитывая особенности детей олигофренов, планирование учебной работы в классах приобретает иной характер. Трудность обучения состоит в том, что учителям нелегко дифференцировать материал из учебников. Для детей с нарушением интеллекта учебного материала мало. Существование классов, разные предметы, которые должны усвоить дети, необходимость развития математических способностей учащихся, а также, неразработанность методики организации учебного процесса (при обучении математике) с целью развития математических способностей определяют актуальность работы. Глава I. Особенности развития младших школьников в специальной школе. 1.Физиологические, психические и психолого-педагогические особенности развития младших школьников. Научной разработкой проблемы отставания в развитии и неуспеваемости их в массовой образовательной школе занимались многие педагоги и психологи, такие как М.А. Данилов, В.И. Быкова, И.А. Менчинская, Т.А. Власова, М.С. Певзнер, А.И. Леонтьев, А.Р. Лурия, А.А. Смирнов, Л.С. Славина и др. Однако категория детей группы риска отдифференцирована в составе детского населения сравнительно недавно. К ней относятся дети, развитие которых осложнено неблагоприятными факторами генетического, биологического и социального свойства. Эти дети не принадлежат к категории больных или дефективных. Однако, в силу указанных обстоятельств находятся в пограничной ситуации между нормой и паталогией, имеют при сохраннном интеллекте худшие, чем у сверстников, адаптационные возможности. Это осложняет их социализацию, делает особо уязвимыми по отношению к несбалансированным условиям внешней среды. Для таких детей характерен низкий уровень выполнения учебных и неучебных заданий, обусловленный сниженной учебной мотивацией и отсутствием познавательных интересов. При этом наблюдается повышенная отвлекаемость, импульсивность, гиперактивность. Всё это обусловлено неярко выраженными теми или иными отклонениями в их развитии. В настоящее время в системе общеобразовательных школ организуются классы компенсирующего обучения (классы коррекции). В эти классы принимаются или переводятся дети группы риска, не имеющие выраженных отклонений в развитии (задержка психического развития церебрально- органического генеза, умственная отсталость, выраженные нарушения речи, слуха, зрения, двигательной сферы). Показателями для зачисления детей в эти классы являются такие состояния как астения, цереброастения, наличие хронических соматических болезней. В эту группу можно отнести детей с нерезко выраженными сенсорными дефектами. Показателями являются нарушения работоспособности связанные с растройствами поведения: невротические, неврозоподобные состояния (страхи, тики, легкое заикание, энурез…). Сюда же следует отнести детей с психофизическим инфантилизмом. Особенности психики таких детей проявляются как в недоразвитии основных психических процессов (памяти, внимания, мышления и др.), так и в особенностях высшей нервной деятельности. Дети, у которых ослаблен процесс возбуждения – вялы, медлительны, плохо усваивают всё новое, учатся с трудом, но в конечном счёте добиваются удовлетворительных результатов. Новые навыки и умения формируются у таких детей медленно, но усваиваются прочно. У этих детей мало инициативы, самостоятельности. У детей с ослабленным процессом торможения несколько иная картина. Они встречаются реже, но заметно выделятся из общей массы. Они быстро реагируют на всё происходящее, отвечают и действуют необдуманно. Среди особенностей высшей нервной деятельности детей группы риска многие исследователи отмечают выраженную инертность. Выработка новых условных связей резко замедленная. Так В.И. Лубовский, отмечает, что особенно инертными оказываются упроченные словесные связи. Ещё одной особенностью является склонность к охранительному торможению. Во время одного и того же урока ученик то слушает и понимает учителя, то перестаёт его понимать. Ребёнку трудно сосредоточить внимание на чём-либо, всё происходящее вокруг воспринимается неясно, трудно припоминается то, что всегда легко вспоминалось. Эти состояния охранительного торможения (изученные и описанные академиком И.П. Павловым и его учениками) под названием «фазовых» состояний возникают у детей группы риска часто. Пока нервные клетки коры головного мозга ребёнка находятся в состояние охранительного торможения, его умственная работоспособность оказывается резко сниженной. Однако, это снижение временное, проходящее. Но в результате учащиеся не имеют систематических знаний. Таким образом, поступающим в школу детям присущ ряд специфических особенностей. Они не обнаруживают готовности к школьному обучению. У них нет нужных для усвоения программного материала умения, навыков и знаний. В связи с этим дети оказываются не в состоянии (без специальной помощи) овладеть счётом, чтением и письмом. Им трудно соблюдать принятые в школе нормы поведения. Они испытывают затруднения в произвольной организации деятельности. Учащиеся с нарушением интеллекта быстро утомляются, работоспособность их падает, а иногда они просто перестают выполнять начатую деятельность. Эти и ряд других особенностей говорят о том, что у детей группы обнаруживается недоразвитие психических процессов. Систематическое психологическое изучение детей олигофренов началось сравнительно недавно. Внимание исследователей было сосредоточено преимущественно на изучении познавательной деятельности детей этой группы. Было установлено, что свойственные детям снижение работоспособности и неустойчивость внимания имеют разнообразные формы индивидуального проявления. У одних детей максимальное напряжение внимания, высокая работоспособность обнаруживаются в начале выполнения задания и неуклонно снижаются по мере продолжения работы, у других, - сосредоточение внимания наступает лишь после некоторого периода деятельности; у третьих – отмечаются периодические колебания внимания и неравномерная работоспособность на протяжении всего времени выполнения задания. У всех детей наблюдаются и недостатки памяти, причём эти недостатки касаются всех видов запоминания: непроизвольного и произвольного, кратковременного и долговременного. Они распространяются на запоминание как наглядного, так и словесного материала, что не может не сказаться на успеваемости. При выполнении многих заданий дети сталкиваются с трудностями интеллектуального характера, которые связаны с тем, что к началу школьного обучения дети ещё не владеют в полной мере интеллектуальными операциями, являющиеся необходимым компонентом мыслительной деятельности. Одна из психологических особенностей детей состоит в том, что у них наблюдается отставание в развитии всех форм мышления. Дети рассматриваемой группы имеют бедный словарный запас, плохо овладевают эмпирическими и грамматическими обобщениями. Дети этой группы также испытывают трудности в понимании и употреблении сложных логико-грамматических конструкций и некоторых частей речи. После поступления в школу эти дети продолжают вести себя как дошкольники. Ведущей деятельностью остаётся игра, положительного отношения к школе не наблюдается. Внимание детей характеризуется неустойчивость, повышенной отвлекаемостью, недостаточной концентрированностью на объекте. При обучении детей с необходимо исключить действия каких бы то ни было посторонних раздражителей. У детей наблюдается сравнительно низкий уровень развития восприятие. Об этом свидетельствует, прежде всего, недостаточность, ограниченность, фрагментарность знаний детей об окружающем мире. Это обусловлено бедностью опыта ребёнка. Работая с такими детьми, учителя должны считаться с тем, что передаваемая им информация далеко не всегда достигает цели. Все сообщаемые детям сведения нужно неоднократно повторять. Т.А. Власова, М.С. Певзнер указывают на снижение произвольной памяти у учащихся как одну из главных причин их трудностей в школьном обучении. Эти дети плохо запоминают тексты, таблицу умножения, не удерживают в уме цель и условие задачи. Им свойственны колебания продуктивности памяти, быстрое забывание выученного. Следует отметить, что для детей характерна конкретность мышления, слабость регулирующей роли мышления, его некритичность. Некоторым детям свойственно не сомневаться в правильности своих, только что возникших предположений. Они редко замечают свои ошибки. Таким образом, коррекционная работа с должна вестись в следующих направлениях: а) осуществлять индивидуальный подход к детям; б) предотвращать наступление утомления; в) в процессе обучения следует использовать те методы, с помощью которых можно максимально активизировать познавательную деятельность детей; г) во время работы с детьми этой категории учитель должен проявлять особый педагогический такт. Важно подмечать и поощрять успехи детей, помогать каждому ребёнка, развивать в нём веру в собственные силы и возможности; д) обеспечить обогащения детей математическими знаниями об (используя развивающие игры, упражнения с конкретными примерами и т. д.) 2. Специфика развития математических способностей детей олигофренов В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований психологов направлен на выявление структуры способностей школьников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально - психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности – сложное, интегральное , психическое образование, своеобразный синтез свойств, или, как их называют компонентов. Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы. Способности не есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать , развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие. Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди учителей заблуждений. Во-первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей. Во-вторых, многие думают, что способные к математике школьники отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ученик может работать медленно и неторопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики. Крутецкий В.А. в книге «Психология математических способностей школьников» различает девять способностей (компонентов математических способностей): 1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей; 2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном; 3) Способность к оперированию числовой и знаковой символикой; 4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах; 5) Способность сокращать процесс рассуждения, мыслить свернутыми структурами; 6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли); 7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов; 8) Математическая память. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы; 9) Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия; Рассматривая развитие математических способностей младших школьников в при помощи компонентов математических способностей Крутецкого В.А., можно сказать, что: У детей младшего школьного возраста с нарушением интеллекта наблюдается более простой вид обобщений – движение от частного к известному общему, подвести частный случай под общее правило. Абстрагирование у этих детей выражено гораздо слабее, чем у их сверстников, которые учатся в простых классах. Большое влияние на их рассуждения оказывают несущественные признаки. Поэтому с такими детьми нужно работать тщательнее, усерднее. Способность к оперированию числовой и знаковой символикой детям даётся нелегко, дети с большим трудом запоминают определения, формулировки, общие схемы рассуждений. Путаются в операциях «сложения» и «вычитания», не запоминают названия некоторых цифр. Свернутость мышления в младшем школьном возрасте проявляется лишь в самой элементарной форме. Детям же классов коррекции это даётся ещё труднее. Говоря о гибкости мыслительных процессов, можно сказать, что у данных детей она развита на самом низком уровне. Им очень трудно переключаться от одной умственной операции к другой, нужен отдых. Утомляемость этих детей повышена. Без наглядных пособий, шаблонов и трафаретов, которыми в основном пользуются учителя, детям труднее воспринимать материал. Проявление математической памяти в её развитых формах не наблюдается. Дети запоминают цифры, операции с трудом. Математическая память находится на низком уровне. Этим детям Аргинская И.И рекомендует использовать геометрические фигуры, их использование позволяет опираться на наглядные образы, выполнять предлагаемые задания в наглядно-действенном плане, что облегчает учащимся достижение успеха. Способность к пространственным представлениям у детей так же не развита как и перечисленные выше компоненты математических способностей. Утомляемость детей к математике повышена. Поэтому уроки математики должны быть интересными, занимательными. Нужно учитывать индивидуальные особенности детей, проводить физкультминутки, чтобы снять утомление. Глава 2. Методика формирования вычислительных навыков в специальных коррекционных школах На изучение математики в учебном плане специальной школы отводится большая часть всего времени. Но математика является одним из предметов, который вызывает значительные затруднения у большого количества учащихся. Одна из главных причин такого положения: подмена основной функции изучения математики – формирование математических понятий, установление связей между ними, с которыми встречаются дети как в школе так и вне её – выработкой вычислительных навыков. Формирование вычислительных навыков – трудоемкое и порой скучная для учащихся работа, если не вноситься разнообразие в ее организацию. Один из приемов детей, следующий: в предлагаемых заданиях даны словесные формулировки познавательных вопросов, а также возможные варианты ответов, один из которых правильный. Учащиеся должны выбрать правильный ответ. Для этого им необходимо выполнить математические задания, например, вычисления. Разнообразная подача математического материала эмоционально воздействует на детей. Дополнительные сведения познавательного характера способствуют активности учащихся, так как в заданиях подобным указанным выше: 1) Заложена смена деятельности детей (они слушают, думают, отвечают, составляют выражения, находят их значения и дописывают результаты); 2) Узнают интересные факты, что не только способствует взаимосвязи изучаемых в школе предметов, расширяет кругозор, способствует общему развитию, но и побуждает к самостоятельному познанию нового. Опытный учитель знает, как важно, чтобы урок с самого начала «заладился». Если хорошо проведен устный счет, с известной долей уверенности можно сказать, что ребята будут активны. Задания подобранные с расчетом пробудить у учащихся интерес, сыграют свою роль - подготовят детей к восприятию нового материала, к решению предложенных упражнений. При обучении в начальных классах наиболее распространена беседа. Это объясняется прежде всего психологическими особенностями детей, младшего школьного возраста. Вопрос стимулирует внимание детей, позволяет включать их в коллективную работу класса и осуществлять руководство познавательной деятельностью детей. - Рассматривая метод как совокупность приемов деятельности учителя и учащихся, Ю. К. Бабанский пишет, что «метод беседы включает в себя приемы постановки вопросов в определенной логической последовательности, приемы постановки наводящих вопросов, приёмы активизации всех учеников в беседе, приемы коррекции ошибочных ответов, приемы формулирования выводов, обобщении, оценки деятельности учащихся»'. Такой подход наиболее эффективен в практике обучения, так как приемы, с одной стороны, конкретизируют особенности применения каждого метода на различных этапах обучения, с другой — расширяют возможности его использования. Рассмотрим использование беседы на этапе устного счета. Прием постановки вопросов в определенной логической последовательности здесь не играет особой роли. Цель беседы на данном этапе — закрепить математические понятия, совершенствовать навыки устных вычислений. Вопросы обычно носят репродуктивный характер. Приведем пример беседы, которая наиболее часто встречается в практике обучения. Учитель предлагает: 1. Найди сумму чисел 80 и 7. 2. Увеличь 53 на 4. 3. К какому числу надо прибавить 20, чтобы получить 28? 4. Чему равна сумма чисел 25 и 14? Чему равна разность этих чисел? Если учитель ограничивается продумыванием только содержания предлагаемых вопросов, то активность учащихся, как показывает практика, снижается. Поэтому на этапе устного счета учитель уделяет особое внимание приемам, активизирующим деятельность учащихся. Перечислим эти приемы. 1. Использование демонстрационных карточек, Учитель показывает две карточки с числами 8 и 7 и спрашивает, какие, действия можно выполнить с данными числами? (Сложение и вычитание.) Затем предлагает задания: Найди сумму этих чисел. Найди разность этих чисел. Увеличь число 80 на 2, на 20. Уменьши число 80 на 2, на 20. После этого учитель выставляет на доске три карточки с числами 20, 9 и 11 и спрашивает: — Какое число из данных трех чисел может быть уменьшаемым? Составь пример. Реши его устно. Какие числа из данных трех чисел могут быть слагаемыми? Составь примеры. Реши их устно. 2. Работа с перфокартами. Каждый ученик получает индивидуальную перфокарту, содержащую одинаковые примеры с различными заданиями. Учащиеся выполняют задания самостоятельно. №1 №2 75+(=79 (+4=79 90-(=81 (-9=81 54+(=62 (+8=82 48+(=39 (-9=39 №3 №4 75 4=79 75+4=( 90 9=81 90-9=( 54 8=62 54+8=( 48 9=39 48-9=( После выполнения задания учитель проводит беседу. — Прочитайте примеры, в которых находили разность. Прочитайте примеры, в которых находили сумму. К какому результату надо прибавить 9, чтобы получить 90? К какому результату надо прибавить 8, чтобы получить 70? В данном случае метод беседы сочетается с методом самостоятельной работы учащихся. Такое сочетание в практике необходимо, а использование перфокарт активизирует учащихся в процессе беседы. 3. Запись выражений на доске. 3*8 4*4 6*5 3*10 8*2 6*4 Учитель предлагает задания. — Увеличь первое произведение на 7. Уменьши второе произведение на 4. Найди разность второго и третьего выражений. Найди сумму пятого и шестого выражений. Прочитай выражения с одинаковыми значениями. 4. Использование индивидуальных карточек с числами. У каждого ученика на парте лежат карточки с числами: 0 1 2 3 4 5 6 7 8 9 .Учитель читает выражение, например три умножить на восемь, ученики поднимают карточку с соответствующим числом (ответ). 3*8 (24) 6*5 (30) 8*2 (16) 5. Выбор ответов. На доске выписаны числа: 32 34 53 84 41 78 96 Учитель читает выражения, учащиеся должны выбрать и прочитать соответствующее этому выражению значение: 4*8 (32) 35 + 6 (41) 80-2 (78) 6. Использование сигнальных карточек. Учитель предлагает учащимся вопросы, связанные с нахождением значений выражений. Прочитав выражение, он показывает на одно из чисел, записанных на доске. Если ответ совпадает с указанным числом, ученик показывает зеленую карточку, если не совпадает — красную. Например, на доске записаны числа: 23 43 35 48 14 87 69 Учитель предлагает увеличить на 4 число 39 и показывает на число 43. Ученик поднимает зеленую карточку. Далее учитель просит уменьшить на 5 число 29 и показывает на число 23. Ученик поднимает красную карточку. Учитель спрашивает, что ответ больше или меньше числа 23? На сколько больше? На сколько нужно уменьшить 29, чтобы получить 23? 7. Обоснование полученных ответов (с использованием различных записей на доске). На доске дается запись: 5*3=15 5*3 = 8 5*3 = 2 Учитель спрашивает: — Какой знак действия нужно поставить в первом случае? (Знак умножения.) Почему? (Чтобы получить 15, нужно 5 повторить слагаемым 3 раза, 5 умножить на 3 равно 15.) Какой знак действия необходим во втором случае? (Знак сложения) Почему? (В ответе число 8, значит, 5 нужно увеличить на 3.) Сравни второе равенство с первым. На каждом уроке математики я стремлюсь провести игру, игровое упражнение, разучить считалку, отгадать загадку, ребус. Мой девиз — учить играя. И это не мешает обучению детей, а, наоборот, помогает детям знакомиться с новым для них учебным материалом, закреплять изученный. Приведу некоторые игры и игровые моменты, которые я часто провожу, обучая детей математике. «Цветик-семицветик» На магнитной доске или на фланелеграфе выставлен рисунок «цветика- семицветика». Учитель читает: Лети, лети, лепесток, через запад, на восток, через север, через юг... возвращайся, сделав круг. Дети хором: Лишь коснешься ты земли, Быть по-моему вели! Ученики один за другим выходят к доске, отрывают лепесток и выполняют задание. Класс следит за отвечающим. Если ученик верно вычислил, класс хлопает в ладоши, ученик берет лепесток на парту. У кого в конце недели окажется 7 лепестков — 7 правильных ответов, может нарисовать «цветик-семицветик» и вместе с учителем написать на его лепестках новое задание. «Почтальон» Учитель читает: Кто стучится в дверь ко мне С толстой сумкой на ремне? Дети хором отвечают: Это он, это он Ленинградский почтальон. Выбираем почтальона и вручаем ему почту: телеграммы, письма, открытки. На корреспонденции, кроме нескольких добрых слов адресату, задание — вычислить выражение, решить задачу. На партах — номера домов. Почтальон берет любое письмо (любую открытку), выполняет записанное на нем задание и доставляет его в соответствующий дом (ответ решенного примера (задачи) указывает номер дома, в который следует доставить письмо). Получивший письмо быстро проверяет правильность ответа. Если ответ неверный, ученики меняются ролями. «Помоги птичке спрятаться от орла» Стихотворение читает учитель, а ученики хором произносят последнее слово. Пой-ка, подпевай-ка! 10 птичек — стайка. На уроке игре детям гораздо интереснее. Но все-таки игра не должна подменять учебу, а игровой интерес – познавательный. Безусловно, в начальных классах игровые моменты включать в урок необходимо, но обращаться с игрой в учебной деятельности нужно аккуратно, тщательно обдумывая сюжет игры, отбирая задания, которые помогут достигнуть поставленной на уроке цели с максимальной эффективностью. (см. приложение) На уроках часто использую стихи или просто рифмованные тексты. Введение такого материала оживляет урок, делая его занимательным, и дети, слушая стихи, незаметно включаются в учебный процесс и приобретают новые знания. (см. приложение) 2. Методика обучения математике в специальной школе, направленных на развитие математических способностей учащихся Обучение – это прежде всего дифференцированный процесс. Обучение в каждом конкретном классе индивидуально и зависит от состава класса. Поэтому учителя, работающие в этих классах, творчески подходят к методике обучения и зачастую некоторые особенности методики носят индивидуальный характер. Рассмотрим некоторые фрагменты уроков А) с геометрическим материалом; Б) с арифметическим материалом; Ребят знакомят с геометрическими понятиями: прямая, луч, отрезок. Вот как возможно это сделать, используя сказку «Путешествие точки по стране геометрии» . Фрагменты урока-знакомства с геометрическими понятиями: прямая, луч, отрезок. - Жила-была точка. Вот она (на магнитную доску вывешивается модель точки). - Она была очень любопытная и хотела всё знать. Увидит незнакомую линию и непременно спросит: «Как эта линия называется?» - А какие вы, ребята, знаете линии? (Кривые, прямые, ломаные). - Подумала однажды точка: «Как же я смогу всё узнать, если всегда буду жить на одном месте?! Отправлюсь-ка я путешествовать!». Сказано- сделано (на доске прямая). Вышла точка на прямую и пошла по этой прямой (учитель передвигает по этой прямой точку). Шла-шла по прямой линии. Долго шла. Устала. Остановилась и говорит: «Долго ли я ещё буду идти? Скоро ли конец прямой?» Засмеялась прямая: «Эх ты, точка! Ведь ты не дойдёшь до конца. Разве ты не знаешь, что у прямой нет конца?» - «Тогда я поверну назад»,- сказала точка. «Я, наверное, пошла не в ту сторону». - «И в другую не будет конца. У прямой линии совсем нет концов». - А вы, ребята, где в жизни могли видеть прямую без конца и без края? (Рельсы, провода). Посмотрите, и наша прямая не имеет конца. Я могу её продолжить (учитель показывает). Давайте начертим прямую у себя в тетради, только вся она у нас не поместится, начертим её часть. А что же наша точка? - «Как же быть?»,- спрашивает она. «Что же мне так и придётся идти, идти и идти без конца?». - «Ну, если ты не хочешь идти без конца, давай позовём на помощь ножницы»,- сказала прямая. - «Давай позовём. А зачем нам ножницы?». - «Сейчас увидишь». Тут, откуда ни возьмись, появились ножницы , щёлкнули перед самым точкиным носом и разрезали прямую (учитель имитирует разрезание прямой). __________________| |________|_____________ - «Ура!»,- закричала точка. «Вот и конец получился! Ай, да ножницы! А теперь сделайте, пожалуйста, конец с другой стороны. - «Можно и с другой»,- послушно щёлкнули ножницы. ______________| |_________|__________| |__________________ - «Как интересно!»,- воскликнула точка. - «Что же из моей прямой получилось? С одной стороны конец, с другой стороны – конец. Как это называется?» - «Это отрезок»,- сказали ножницы. «Теперь ты, точка, на отрезке прямой». - «Отрезок прямой, отрезок прямой»,- с удовольствием повторила точка, прогуливаясь по отрезку от одного конца до другого. - Давайте и мы начертим в тетради две точки. Приложите к ним линейку и соедините точки прямой линией. Получился отрезок. Начертите ещё отрезки. (ученики чертят разные отрезки: по длине, расположению на листе). К доске вызываются ученики начертить свой отрезок. Хором повторяют название – «отрезок». - Я запомню, - сказала точка,- это название. Мне нравится на отрезке! Но прямая мне тоже нравится. Жаль, что её не стало. Ведь теперь вместо прямой есть мой отрезок и ещё два этих…. - не знаю как их назвать. Тоже отрезки? (Как вы, ребята, думаете?- Нет. У отрезка 2 конца). - Нет,- ответили ножницы. Ведь у них конец только с одной стороны, а в другую сторону нет конца. И называется это по-другому. - А как они называются? - Лучами. Это луч. И это луч. ____________________| |______________________ - А! – радостно сказала точка. – Я знаю почему они так называются. Они похожи на… (А кто скажет на что похожи эти лучи?) – солнечные лучи. - Да, - подтвердили ножницы. Солнечные лучи начинаются на солнце и идут от солнца без конца, если только не встретят что-нибудь на своём пути. Например, Землю, Луну или спутник. - Значит из прямой вот что получилось: мой отрезок и ещё два луча. Давайте и мы начертим лучи у себя в тетради. - Скажите, чем же отличаются и что общего между прямой, отрезком и лучом? (общее – все прямые). Отрезок и луч имеют конец, только отрезок – два конца, а луч – один. У прямой конца совсем нет. Далее следуют задания на закрепление. Теперь рассмотрим фрагмент урока на арифметический материал. Тема: «Сложение и вычитание круглых десятков». (40+20);(50-30) На доске десятки (полоски, содержащие 10 квадратов) 40+20 Учитель на доску выкладывает 4 полоски. Учитель: сколько десятков на доске? Ученик: четыре. Учитель: какое это число? Ученик: 40. Учитель добавляет ещё 2 полоски в другую сторону доски. Учитель: Добавлю ещё десятки. Сколько на доске? Ученик: 2. Учитель: какое число? Ученик: 20. Учитель: а теперь нам нужно узнать сколько десятков и тут (показывает на 4 десятка) и тут (на 2 десятка) вместе. Как это сделать? Ученик: сложить 4 десятка и 2 десятка. Учитель: записывает 4 десятка+2 десятка=6 десятков 40+20=60. Что общего в числах 40,20,60? Ученик: 0 – единиц. Учитель: Я могу ещё по-другому записать этот пример - в столбик. Посмотрите, как я это делаю. Пишу десятки под десятками, единицы под единицами. Складываю. Начинаю с единиц. Складываю единицы: 0 единиц+0 единиц=0 единиц. Складываю десятки: 4 десятка+ 2 десятка= 6 десятков. Читаю ответ: шестьдесят. Аналогичный приём используется при сложении двузначных чисел, из которых одно оканчивается 0, 34+20 и сложение двузначного и однозначного числа 34+2. А также при сложении и вычитании двузначных чисел без перехода через десяток (например, 42+53, 28-12). Иная запись в столбик используется при сложении двузначного числа с однозначным и двузначного с двузначным с переходом через десяток. Например, 26+4. Пишу десяток под десятком, единицу под единицей. Пишу 4 под 6. Складываю единицы, 6+4=10. Записываю 10. Под десятком переписываю 2. Складываю. Получаем 30. Такая запись в столбик оформляется для того, чтобы избежать ошибок при получении двузначного числа в результате сложения единиц и перехода десятка в свой разряд. (Этот десяток забывается детьми). Приведём ещё пример: Пишу десяток под десятком, единицу под единицей. Складываю единицы. 9+3=12. Записываю 12. Складываю десятки 4+2=6. Записываю под десятками 6. Складываю. Ответ: 72. Заметим, что письменно выполнение действий быстро и хорошо усваивается детьми и , вскоре, многие из них переходят у устным вычислениям. Для того, чтобы у детей закрепились правила в памяти нужно чаще повторять уже ранее изученный материал. Это правило поможет и в дальнейшей работе учителя. Заключение 1. Возникла необходимость обучать детей в структуре школ - интернатов, используя специальную методику проведения уроков математики. 2. Психолого-педагогические особенности детей олигофренов, отличающие их от сверстников, требуют пересмотра подхода к обучению в этих классах, используя специфические методики обучения. 3. Учебная деятельность организуется в форме дифференцированного подхода к учащимся, направленная на коррекцию познавательных процессов. 4. В обучении детей с глубокими интеллектуальными нарушениями невозможно ориентироваться лишь на усвоение определенного набора знаний, умений, навыков. Нецелесообразно ожидать, что навыки, умения, представления об окружающем удастся сформировать у детей в полном объеме. В зависимости от индивидуальных особенностей ребенок может достигать определенного уровня успешности в том или ином виде деятельности. Так, условием будет индивидуализация процесса обучения и воспитания. Литература 1. Власова Т.А., Певзнер М.С. О детях с отклонениями в развитии. Москва, 1973. 2. Воспитание и обучение детей во вспомогательной школе под редакцией В.В. Воронковой. Москва, 1994. 3. Выготский Л.С. Собрание сочинений в 6 томах, том 5. Москва, 1983. 4. Кащенко В.П. Педагогическая коррекция. Москва, 1994. 5. Осницкий А.К. Психология самостоятельности. Методы исследования и диагностики. Москва-Нальчик, 1996 6. Рубинштейн С.Я. Психология умственно отсталого школьника. Москва, 1986. 7. Перова М.П. Методика преподавания математики во вспомогательной школе. Москва, «Просвещение». 1978. 8. Перова М.П. Дидактические игры и упражнения по математике. Москва, «Просвещение», 1996. 9. Морозова Н.Г. Формирование познавательных интересов у аномальных детей. Москва, «Просвещение», 1969. 10. Брезе Б. Активизация ослабленного интеллекта при обучении во вспомогательных школах. Москва, «Просвещение», 1981. 11. Соловьев И.М. Особенности познавательной деятельности учащихся вспомогательной школы. Москва, 1953. 12. Скаткин Л.Н. Обучение решению простых и составных арифметических задач. Москва, 1963. 13.Хилько А.А. Вопросы обучения и воспитания умственно отсталых школьников. Ленинград, 1964 14. Граборов А.П. Игра и ее значение в развитии ребенка. Москва, 1916. 15. Царева С.Е., Волчек М.Г. Обучение математике и здоровье учащихся. Начальная школа. 11.2002. 16. Эк В.В., Перова М.Н. Обучение наглядной геометрии во вспомогательной школе. Москва, 1983. 17. Коваленков В.Г. Дидактические игры на уроках математики. Москва, 1990. |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |