рефераты рефераты
Домой
Домой
рефераты
Поиск
рефераты
Войти
рефераты
Контакты
рефераты Добавить в избранное
рефераты Сделать стартовой
рефераты рефераты рефераты рефераты
рефераты
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты
 
МЕНЮ
рефераты Компьютерные сети рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Компьютерные сети

Компьютерные сети

Введение.

На сегодняшний день в мире существует более 130 миллионов компьютеров

и более 80 % из них объединены в различные информационно-вычислительные

сети от малых локальных сетей в офисах до глобальных сетей типа Internet.

Всемирная тенденция к объединению компьютеров в сети обусловлена рядом

важных причин, таких как ускорение передачи информационных сообщений,

возможность быстрого обмена информацией между пользователями, получение и

передача сообщений ( факсов, E - Mail писем и прочего ) не отходя от

рабочего места, возможность мгновенного получения любой информации из любой

точки земного шара, а так же обмен информацией между компьютерами разных

фирм производителей работающих под разным программным обеспечением.

Такие огромные потенциальные возможности которые несет в себе

вычислительная сеть и тот новый потенциальный подъем который при этом

испытывает информационный комплекс, а так же значительное ускорение

производственного процесса не дают нам право не принимать это к разработке

и не применять их на практике.

Поэтому необходимо разработать принципиальное решение вопроса по

организации ИВС ( информационно-вычислительной сети ) на базе уже

существующего компьютерного парка и программного комплекса отвечающего

современным научно-техническим требованиям с учетом возрастающих

потребностей и возможностью дальнейшего постепенного развития сети в связи

с появлением новых технических и программных решений.

Постановка задачи.

На текущем этапе развития объединения сложилась ситуация когда :

1. В объединении имеется большое количество компьютеров работающих

отдельно от всех остальных компьютеров и не имеющих возможность гибко

обмениваться с другими компьютерами информацией.

2. Невозможно создание общедоступной базы данных, накопление

информации при существующих объемах и различных методах обработки и

хранения информации.

3. Существующие ЛВС объединяют в себе небольшое количество

компьютеров и работают только над конкретными и узкими задачами.

4. Накопленное программное и информационное обеспечение не

используется в полном объеме и не имеет общего стандарта хранения.

5. При имеющейся возможности подключения к глобальным вычислительным

сетям типа Internet необходимо осуществить подключение к информационному

каналу не одной группы пользователей, а всех пользователей с помощью

объединения в группы.

Анализ методов решения данной задачи.

Для решения данной проблемы предложено создать единую информационную

сеть (ЕИС) предприятия. ЕИС предприятия должна выполнять следующие функции:

1. Создание единого информационного пространства которое способно

охватить и применять для всех пользователей информацию созданную в разное

время и под разными типами хранения и обработки данных, распараллеливание и

контроль выполнения работ и обработки данных по ним.

2. Повышение достоверности информации и надежности ее хранения путем

создания устойчивой к сбоям и потери информации вычислительной системы, а

так же создание архивов данных которые можно использовать, но на текущий

момент необходимости в них нет.

3. Обеспечения эффективной системы накопления, хранения и поиска

технологической, технико-экономической и финансово-экономической информации

по текущей работе и проделанной некоторое время назад ( информация архива)

с помощью создания глобальной базы данных.

4. Обработка документов и построения на базе этого действующей системы

анализа, прогнозирования и оценки обстановки с целью принятия оптимального

решения и выработки глобальных отчетов.

5. Обеспечивать прозрачный доступ к информации авторизованному

пользователю в соответствии с его правами и привилегиями.

В данной работе на практике рассмотрено решение 1-го пункта “ Задачи

” - Создание единого информационного пространства - путем рассмотрения и

выбора лучшего из существующих способов или их комбинации.

Рассмотрим нашу ИВС. Упрощая задачу можно сказать, что это локальная

вычислительная сеть ( ЛВС ).

Что такое ЛВС? Под ЛВС понимают совместное подключение нескольких

отдельных компьютерных рабочих мест ( рабочих станций ) к единому каналу

передачи данных. Благодаря вычислительным сетям мы получили возможность

одновременного использования программ и баз данных несколькими

пользователями.

Понятие локальная вычислительная сеть - ЛВС ( англ. LAN - Lokal Area

Network ) относится к географически ограниченным ( территориально или

производственно) аппаратно-программным реализациям, в которых несколько

компьютерных систем связанны друг с другом с помощью соответствующих

средств коммуникаций. Благодаря такому соединению пользователь может

взаимодействовать с другими рабочими станциями, подключенными к этой ЛВС.

В производственной практики ЛВС играют очень большую роль.

Посредством ЛВС в систему объединяются персональные компьютеры,

расположенные на многих удаленных рабочих местах, которые используют

совместно оборудование, программные средства и информацию. Рабочие места

сотрудников перестают быть изолированными и объединяются в единую систему.

Рассмотрим преимущества, получаемые при сетевом объединении персональных

компьютеров в виде внутрипроизводственной вычислительной сети.

Разделение ресурсов.

Разделение ресурсов позволяет экономно использовать ресурсы,

например, управлять периферийными устройствами, такими как лазерные

печатающие устройства, со всех присоединенных рабочих станций.

Разделение данных.

Разделение данных предоставляет возможность доступа и управления

базами данных с периферийных рабочих мест, нуждающихся в информации.

Разделение программных средств.

Разделение программных средств предоставляет возможность

одновременного использования централизованных, ранее установленных

программных средств.

Разделение ресурсов процессора.

При разделение ресурсов процессора возможно использование

вычислительных мощностей для обработки данных другими системами, входящими

в сеть. Предоставляемая возможность заключается в том, что на имеющиеся

ресурсы не “набрасываются” моментально, а только лишь через специальный

процессор, доступный каждой рабочей станции.

Многопользовательский режим.

Многопользовательские свойства системы содействуют одновременному

использованию централизованных прикладных программных средств, ранее

установленных и управляемых, например, если пользователь системы работает с

другим заданием, то текущая выполняемая работа отодвигается на задний план.

Все ЛВС работают в одном стандарте принятом для компьютерных сетей - в

стандарте Open Systems Interconnection (OSI).

Базовая модель OSI (Open System Interconnection)

Для того чтобы взаимодействовать, люди используют общий язык. Если они

не могут разговаривать друг с другом непосредственно, они применяют

соответствующие вспомогательные средства для передачи сообщений.

Показанные выше стадии необходимы, когда сообщение передается от

отправителя к получателю.

Для того чтобы привести в движение процесс передачи данных,

использовали машины с одинаковым кодированием данных и связанные одна с

другой. Для единого представления данных в линиях связи, по которым

передается информация, сформирована Международная организация по

стандартизации (англ. ISO - International Standards Organization).

ISO предназначена для разработки модели международного

коммуникационного протокола, в рамках которой можно разрабатывать

международные стандарты. Для наглядного пояснения расчленим ее на семь

уровней.

Международных организация по стандартизации (ISO) разработала базовую

модель взаимодействия открытых систем (англ. Open Systems Interconnection

(OSI)). Эта модель является международным стандартом для передачи данных.

Модель содержит семь отдельных уровней:

Уровень 1: физический - битовые протоколы передачи информации;

Уровень 2: канальный - формирование кадров, управление доступом к

среде;

Уровень 3: сетевой - маршрутизация, управление потоками данных;

Уровень 4: транспортный - обеспечение взаимодействия удаленных

процессов;

Уровень 5: сеансовый - поддержка диалога между удаленными

процессами;

Уровень 6: представлении данных - интерпретация передаваемых данных;

Уровень 7: прикладной - пользовательское управление данными.

Основная идея этой модели заключается в том, что каждому уровню

отводится конкретная ролью в том числе и транспортной среде. Благодаря

этому общая задача передачи данных расчленяется на отдельные легко

обозримые задачи. Необходимые соглашения для связи одного уровня с выше- и

нижерасположенными называют протоколом.

Так как пользователи нуждаются в эффективном управлении, система

вычислительной сети представляется как комплексное строение, которое

координирует взаимодействие задач пользователей.

С учетом вышеизложенного можно вывести следующую уровневую модель с

административными функциями, выполняющимися в пользовательском прикладном

уровне.

Отдельные уровни базовой модели проходят в направлении вниз от

источника данных (от уровня 7 к уровню 1) и в направлении вверх от

приемника данных (от уровня 1 к уровню 7). Пользовательские данные

передаются в нижерасположенный уровень вместе со специфическим для уровня

заголовком до тех пор, пока не будет достигнут последний уровень.

На приемной стороне поступающие данные анализируются и, по мере

надобности, передаются далее в вышерасположенный уровень, пока информация

не будет передана в пользовательский прикладной уровень.

Уровень 1. Физический.

На физическом уровне определяются электрические, механические,

функциональные и процедурные параметры для физической связи в системах.

Физическая связь и неразрывная с ней эксплуатационная готовность являются

основной функцией 1-го уровня. Стандарты физического уровня включают

рекомендации V.24 МККТТ (CCITT), EIA RS232 и Х.21. Стандарт ISDN (

Integrated Services Digital Network) в будущем сыграет определяющую роль

для функций передачи данных. В качестве среды передачи данных используют

трехжильный медный провод (экранированная витая пара), коаксиальный кабель,

оптоволоконный проводник и радиорелейную линию.

Уровень 2. Канальный.

Канальный уровень формирует из данных, передаваемых 1-м уровнем, так

называемые "кадры" последовательности кадров. На этом уровне осуществляются

управление доступом к передающей среде, используемой несколькими ЭВМ,

синхронизация, обнаружение и исправление ошибок.

Уровень 3. Сетевой.

Сетевой уровень устанавливает связь в вычислительной сети между двумя

абонентами. Соединение происходит благодаря функциям маршрутизации, которые

требуют наличия сетевого адреса в пакете. Сетевой уровень должен также

обеспечивать обработку ошибок, мультиплексирование, управление потоками

данных. Самый известный стандарт, относящийся к этому уровню, -

рекомендация Х.25 МККТТ (для сетей общего пользования с коммутацией

пакетов).

Уровень 4. Транспортный.

Транспортный уровень поддерживает непрерывную передачу данных между

двумя взаимодействующими друг с другом пользовательскими процессами.

Качество транспортировки, безошибочность передачи, независимость

вычислительных сетей, сервис транспортировки из конца в конец, минимизация

затрат и адресация связи гарантируют непрерывную и безошибочную передачу

данных.

Уровень 5. Сеансовый.

Сеансовый уровень координирует прием, передачу и выдачу одного сеанса

связи. Для координации необходимы контроль рабочих параметров, управление

потоками данных промежуточных накопителей и диалоговый контроль,

гарантирующий передачу, имеющихся в распоряжении данных. Кроме того,

сеансовый уровень содержит дополнительно функции управления паролями,

подсчета платы за пользование ресурсами сети, управления диалогом,

синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок

в нижерасположенных уровнях.

Уровень 6. Представления данных.

Уровень представления данных предназначен для интерпретации данных; а

также подготовки данных для пользовательского прикладного уровня. На этом

уровне происходит преобразование данных из кадров, используемых для

передачи данных в экранный формат или формат для печатающих устройств

оконечной системы.

Уровень 7. Прикладной.

В прикладном уровне необходимо предоставить в распоряжение

пользователей уже переработанную информацию. С этим может справиться

системное и пользовательское прикладное программное обеспечение.

Для передачи информации по коммуникационным линиям данные

преобразуются в цепочку следующих друг за другом битов (двоичное

кодирование с помощью двух состояний:"0" и "1").

Передаваемые алфавитно-цифровые знаки представляются с помощью битовых

комбинаций. Битовые комбинации располагают в определенной кодовой таблице,

содержащей 4-, 5-, 6-, 7- или 8-битовые коды.

Количество представленных знаков в ходе зависит от количества битов,

используемых в коде: код из четырех битов может представить максимум 16

значений, 5-битовый код - 32 значения, 6-битовый код - 64 значения, 7-

битовый - 128 значений и 8-битовый код - 256 алфавитно-цифровых знаков.

При передаче информации между одинаковыми вычислительными системами и

различающимися типами компьютеров применяют следующие коды:

На международном уровне передача символьной информации осуществляется

с помощью 7-битового кодирования, позволяющего закодировать заглавные и

строчные буквы английского алфавита, а также некоторые спецсимволы.

Национальные и специальные знаки с помощью 7-битово кода представить

нельзя. Для представления национальных знаков применяют наиболее

употребимый 8-битовый код.

Для правильной и, следовательно, полной и безошибочной передачи данных

необходимо придерживаться согласованных и установленных правил. Все они

оговорены в протоколе передачи данных.

Протокол передачи данных требует следующей информации:

• Синхронизация

Под синхронизацией понимают механизм распознавания начала блока данных

и его конца.

• Инициализация

Под инициализацией понимают установление соединения между

взаимодействующими партнерами.

• Блокирование

Под блокированием понимают разбиение передаваемой информации на блоки

данных строго определенной максимальной длины (включая опознавательные

знаки начала блока и его конца).

• Адресация

Адресация обеспечивает идентификацию различного используемого

оборудования данных, которое обменивается друг с другом информацией во

время взаимодействия.

• Обнаружение ошибок

Под обнаружением ошибок понимают установку битов четности и,

следовательно, вычисление контрольных битов.

• Нумерация блоков

Текущая нумерация блоков позволяет установить ошибочно передаваемую

или потерявшуюся информацию.

• Управление потоком данных

Управление потоком данных служит для распределения и синхронизации

информационных потоков. Так, например, если не хватает места в буфере

устройства данных или данные не достаточно быстро обрабатываются в

периферийных устройствах (например, принтерах), сообщения и / или запросы

накапливаются.

• Методы восстановления

После прерывания процесса передачи данных используют методы

восстановления, чтобы вернуться к определенному положению для повторной

передачи информации.

• Разрешение доступа

Распределение, контроль и управление ограничениями доступа к данным

вменяются в обязанность пункта разрешения доступа (например, "только

передача" или "только прием" ).

Сетевые устройства и средства коммуникаций.

В качестве средств коммуникации наиболее часто используются витая

пара, коаксиальный кабель оптоволоконные линии. При выборе типа кабеля

учитывают следующие показатели:

• стоимость монтажа и обслуживания,

• скорость передачи информации,

• ограничения на величину расстояния передачи информации (без

дополнительных усилителей-повторителей(репитеров)),

• безопасность передачи данных.

Главная проблема заключается в одновременном обеспечении этих

показателей, например, наивысшая скорость передачи данных ограничена

максимально возможным расстоянием передачи данных, при котором еще

обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и

простота расширения кабельной системы влияют на ее стоимость.

Витая пара.

Наиболее дешевым кабельным соединением является витое двухжильное

проводное соединение часто называемое "витой парой" (twisted pair). Она

позволяет передавать информацию со скоростью до 10 Мбит/с, легко

наращивается, однако является помехонезащищенной. Длина кабеля не может

превышать 1000 м при скорости передачи 1 Мбит/с. Преимуществами являются

низкая цена и бес проблемная установка. Для повышения помехозащищенности

информации часто используют экранированную витую пару, т.е. витую пару,

помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля.

Это увеличивает стоимость витой пары и приближает ее цену к цене

коаксиального кабеля.

Коаксиальный кабель.

Коаксиальный кабель имеет среднюю цену, хорошо помехозащитен и

применяется для связи на большие расстояния (несколько километров).

Скорость передачи информации от 1 до 10 Мбит/с, а в некоторых случаях может

достигать 50 Мбит/с. Коаксиальный кабель используется для основной и

широкополосной передачи информации.

Широкополосный коаксиальный кабель.

Широкополосный коаксиальный кабель невосприимчив к помехам, легко

наращивается, но цена его высокая. Скорость передачи информации равна 500

Мбит/с. При передачи информации в базисной полосе частот на расстояние

более 1,5 км требуется усилитель, или так называемый репитер (повторитель).

Поэтому суммарное расстояние при передаче информации увеличивается до 10

км. Для вычислительных сетей с топологией шина или дерево коаксиальный

кабель должен иметь на конце согласующий резистор (терминатор).

Еthernet-кабель.

Ethernet-кабель также является коаксиальным кабелем с волновым

сопротивлением 50 Ом. Его называют еще толстый Ethernet (thick) или желтый

кабель (yellow cable). Он использует 15-контактное стандартное включение.

Вследствие помехозащищенности является дорогой альтернативой обычным

коаксиальным кабелям. Максимально доступное расстояние без повторителя не

превышает 500 м, а общее расстояние сети Ethernet - около 3000 м. Ethernet-

кабель, благодаря своей магистральной топологии, использует в конце лишь

один нагрузочный резистор.

Сheapernеt-кабель.

Более дешевым, чем Ethernet-кабель является соединение Cheapernet-

кабель или, как его часто называют, тонкий (thin) Ethernet. Это также 50-

омный коаксиальный кабель со скоростью передачи информации в десять

миллионов бит / с.

При соединении сегментов Сhеарегnеt-кабеля также требуются

повторители. Вычислительные сети с Cheapernet-кабелем имеют небольшую

стоимость и минимальные затраты при наращивании. Соединения сетевых плат

производится с помощью широко используемых малогабаритных байонетных

разъемов (СР-50). Дополнительное экранирование не требуется. Кабель

присоединяется к ПК с помощью тройниковых соединителей (T-connectors).

Расстояние между двумя рабочими станциями без повторителей может

составлять максимум 300 м, а общее расстояние для сети на Cheapernet-кабеля

- около 1000 м. Приемопередатчик Cheapernet расположен на сетевой плате и

как для гальванической развязки между адаптерами, так и для усиления

внешнего сигнала

Оптоволоконные линии.

Наиболее дорогими являются оптопроводники, называемые также

стекловолоконным кабелем. Скорость распространения информации по ним

достигает нескольких гигабит в секунду. Допустимое удаление более 50 км.

Внешнее воздействие помех практически отсутствует. На данный момент это

РЕКЛАМА

рефераты НОВОСТИ рефераты
Изменения
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер


рефераты СЧЕТЧИК рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты © 2010 рефераты