рефераты рефераты
Домой
Домой
рефераты
Поиск
рефераты
Войти
рефераты
Контакты
рефераты Добавить в избранное
рефераты Сделать стартовой
рефераты рефераты рефераты рефераты
рефераты
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты
 
МЕНЮ
рефераты Мультимедиа рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Мультимедиа

Мультимедиа

Мультимедиа

Мультимедиа. Многие привыкли думать, что это колонки с сабвуфером, звуковые

карточки, CD-ROM, DVD, цифровые фото- или видеокамеры ...

В одном из стародавних номеров журнала "КомпьютерПресс" (год 1993-94), был

цикл статей Сергея Новосельцева о мультимедийных продуктах и их разработке.

Эпиграфом к одной из статей было выражение: "Мультимедиа - это синтез трех

стихий: аудио, графики и текстах". На сегодняшний момент эта формула до сих

пор остается актуальной. Сейчас модно говорить о стиле жизни. Мобильный

стиль жизни. Бизнес-стиль жизни. Бомж-стиль. Андеграунд-стиль. MTV-стиль...

Я бы сказал, что существует way of multimedia-life. Это когда без синтеза

трех стихий, тебе скучно нажимать кнопку Power. Планомерно, изо дня в день,

из года в год, ты идешь к мультимедии и к смыслу жизни.

Наиболее популярный синоним мультимедии - "CD-ROM". Мы проходим по городам

и весям и видим вывески: "Компьютеры, CD-ROM, комплектующие, мобильные

телефоны (последнее достижение новых информационных технологий.)". Мы

научились называть вещи своими именами. "Болванка" - это тот же сидиром, но

пустой, без информации, без записи. Просто "сидиром" - что-то записано,

игра, телефонная база, пиратский Пульс цен.

С удовольствием приведу вам свое понимание мультимедии. Если у вас есть

терпение, усидчивость, то вы дочитаете этот текст до конца.

"Есть видео, есть аудио, есть книги и журналы, а еще есть компьютеры,

Интернет, CD, DVD, ... Мультимедийный продукт - наиболее эффективная форма

подачи информации в среде компьютерных информационных технологий. Благодаря

СИНТЕЗУ видео, анимации, звука, текста, появляется возможность открыть для

себя и окружающих новый мир.

Листая модный журнал о путешествиях, у нас есть возможность просмотреть

иллюстрации или фотоматериалы, но нет возможности просмотреть

видеоматериалы, посвященные загадочным странам или узнать преимущества той

или иной фирмы-туроператора. Вставляя видеокассету в видеомагнитофон, где

показывается процесс изготовления титановых дисков, нас интересуют

технические параметры и микроструктура металла. Среди массы буклетов с

выставки мы лихорадочно ищем данные... Мы хотим самостоятельно изучить

иностранный язык. Идем в магазин, покупаем самоучитель. Но как проверить,

насколько совершенным стало наше произношение или обогатился словарный

запас? Просматривая семейный фотоальбом или видеокассеты, возникает желание

записать их на DVD и увековечить свое доброе имя в памяти потомков. Как

совершить путешествие по Лувру и разгадать тайну улыбки Джаконды, не

вставая из своего любимого кресла? Посмотрев на звездное небо, хочется

узнать на каком расстоянии находится яркая звезда, вспыхнувшая на

востоке...

Мультимедийный продукт позволяет собрать воедино огромные и разрозненные

объемы информации, дает возможность с помощью интерактивного взаимодействия

выбирать, интересующие в данный момент, информационные блоки, повышает

эффективность восприятия информации. У Заумно? Мне кажется, нет.

Определение, краткий исторический экскурс и основные возможности технологии

Мультимедиа (multimedia) - это современная компьютерная информационная

технология, позволяющая объединить в компьютерной системе текст, звук,

видеоизображение, графическое изображение и анимацию (мультипликацию).

Мультимедиа-это сумма технологий, позволяющих компьютеру вводить,

обрабатывать, хранить, передавать и отображать (выводить) такие типы

данных, как текст, графика, анимация, оцифрованные неподвижные изображения,

видео, звук, речь.

30 лет назад мультимедиа ограничивалась пишущей машинкой " Консул ",

которая не только печатала, но и могла привлечь внимание заснувшего

оператора мелодичным треском. Чуть позже компьютеры уменьшились до бытовой

аппаратуры, что позволило собирать их в гаражах и комнатах. Нашествие

любителей дало новый толчок развития мультимедии (компьютерный гороскоп

1980 года, который при помощи динамика и программируемого таймера

синтезировал расплывчатые устные угрозы на каждый день да еще перемещал по

экрану звезды (зачатки анимации)). Примерно в это время появился и сам

термин мультимедиа. Скорее всего, он служил ширмой, отгораживавшей

лаборатории от взглядов непосвященных ("А что это у тебя там звенит". "Да

это мультимедиа").

Критическая масса технологий накапливается. Появляются бластеры, "сидиромы"

и другие плоды эволюции, появляется интернет, WWW, микроэлектроника.

Человечество переживает информационную революцию. И вот мы становимся

свидетелями того, как общественная потребность в средствах передачи и

отображения информации вызывает к жизни новую технологию, за неимением

более коректного термина называя ее мультимедиа. В наши дни это понятие

может полностью заменить компьютер практически в любом контексте.

В английском языке уже приживается новый термин information appliance - "

информационное приспособление

Появление систем мультимедиа, безусловно, производит революционные

изменения в таких областях, как образование, компьютерный тренинг, во

многих сферах профессиональной деятельности, науки, искусства, в

компьютерных играх и т.д.

Появление систем мультимедиа подготовлено как с требованиями практики, так

и с развитием теории. Однако, резкий рывок в этом направлении, произошедший

в этом направлении за последние несколько лет, обеспечен, прежде всего,

развитием технических и системных средств. Это и прогресс в развитии ПЭВМ:

резко возросшие объем памяти, быстродействие, графические возможности,

характеристики внешней памяти, и достижения в области видеотехники,

лазерных дисков — аналоговых и CD-ROM, а также их массовое внедрение.

Важную роль сыграла так же разработка методов быстрого и эффективного

сжатия / развертки данных.

Современный мультимедиа–ПК в полном “вооружении” напоминает домашний

стереофонический Hi–Fi комплекс, объединенный с дисплеем–телевизором. Он

укомплектован активными стереофоническими колонками, микрофоном и

дисководом для оптических компакт–дисков CD–ROM (CD — Compact Disc, компакт-

диск; ROM — Read only Memory, память только для считывания). Кроме того,

внутри компьютера укрыто новое для ПК устройство — аудиоадаптер,

позволивший перейти к прослушиванию чистых стереофонических звуков через

акустические колонки с встроенными усилителями. Мультимедиа-технологии

являются одним из наиболее перспективных и популярных направлений

информатики. Они имеют целью создание продукта, содержащего "коллекции

изображений, текстов и данных, сопровождающихся звуком, видео, анимацией и

другими визуальными эффектами (Simulation), включающего интерактивный

интерфейс и другие механизмы управления". Данное определение сформулировано

в 1988 году крупнейшей Европейской Комиссией, занимающейся проблемами

внедрения и использования новых технологий. Идейной предпосылкой

возникновения технологии мультимедиа считают концепцию организации памяти

"MEMEX", предложенную еще в 1945 году американским ученым Ваннивером Бушем.

Она предусматривала поиск информации в соответствии с ее смысловым

содержанием, а не по формальным признакам (по порядку номеров, индексов или

по алфавиту и т.п.) Эта идея нашла свое выражение и компьютерную реализацию

сначала в виде системы гипертекста (система работы с комбинациями текстовых

материалов), а затем и гипермедиа (система, работающая с комбинацией

графики, звука, видео и анимации), и, наконец, в мультимедиа, соединившей в

себе обе эти системы. Однако всплеск интереса в конце 80-х годов к

применению мультимедиа-технологии в гуманитарной областях (и, в частности,

в историко-культурной) связан, несомненно, с именем выдающегося

американского компьютерщика-бизнесмена Билла Гейтса, которому принадлежит

идея создания и успешной реализации на практике мультимедийного

(коммерческого) продукта на основе служебной (!) музейной инвентарной базы

данных с использованием в нем всех возможных "сред": изображений, звука,

анимации, гипертекстовой системы ("National Art Gallery. London")

Именно этот продукт аккумулировал в себе три основные принципа мультимедиа:

1. Представление информации с помощью комбинации множества воспринимаемых

человеком сред (собственно термин происходит от англ. multi - много, и

media - среда);

2. Наличие нескольких сюжетных линий в содержании продукта (в том числе и

выстраиваемых самим пользователем на основе "свободного поиска" в

рамках предложенной в содержании продукта информации);

3. Художественный дизайн интерфейса и средств навигации.

Несомненным достоинством и особенностью технологии являются следующие

возможности мультимедиа, которые активно используются в представлении

информации:

. возможность хранения большого объема самой разной информации на одном

носителе (до 20 томов авторского текста, около 2000 и более

высококачественных изображений, 30-45 минут видеозаписи, до 7 часов

звука);

. возможность увеличения (детализации) на экране изображения или его

наиболее интересных фрагментов, иногда в двадцатикратном увеличении

(режим "лупа") при сохранении качества изображения. Это особенно важно

для презентации произведений искусства и уникальных исторических

документов;

. возможность сравнения изображения и обработки его разнообразными

программными средствами с научно- исследовательскими или

познавательными целями;

. возможность выделения в сопровождающем изображение текстовом или

другом визуальном материале "горячих слов (областей)", по которым

осуществляется немедленное получение справочной или любой другой

пояснительной (в том числе визуальной) информации (технологии

гипертекста и гипермедиа);

. возможность осуществления непрерывного музыкального или любого другого

аудиосопровождения, соответствующего статичному или динамичному

визуальному ряду;

. возможность использования видеофрагментов из фильмов, видеозаписей и

т.д., функции "стоп-кадра", покадрового "пролистывания" видеозаписи;

. возможность включения в содержание диска баз данных, методик обработки

образов, анимации (к примеру, сопровождение рассказа о композиции

картины графической анимационной демонстрацией геометрических

построений ее композиции) и т.д.;

. возможность подключения к глобальной сети Internet;

. возможность работы с различными приложениями (текстовыми, графическими

и звуковыми редакторами, картографической информацией);

. возможность создания собственных "галерей" (выборок) из представляемой

в продукте информации (режим "карман" или "мои пометки");

. возможность "запоминания пройденного пути" и создания "закладок" на

заинтересовавшей экранной "странице";

. возможность автоматического просмотра всего содержания продукта

("слайд-шоу") или создания анимированного и озвученного "путеводителя-

гида" по продукту ("говорящей и показывающей инструкции

пользователя"); включение в состав продукта игровых компонентов с

информационными составляющими;

. возможность "свободной" навигации по информации и выхода в основное

меню (укрупненное содержание), на полное оглавление или вовсе из

программы в любой точке продукта.

Основные носители

В качестве носителей мультимедийных продуктов используются средства,

способные хранить огромное количество самой разнообразной информации. Как

правило, мультимедийные продукты ориентированы либо на компьютерные

носители и средства воспроизведения (CD-ROM), либо на специальные

телевизионные приставки (CD-i), либо на телекоммуникационные сети и их

системы.

. CD-ROM (CD - Read Only Memory) - оптический диск, предназначенный для

компьютерных систем. Среди его достоинств - многофункциональность,

свойственная компьютеру, среди недостатков - отсутствие возможности

пополнения информации - ее "дозаписи" на диск, не всегда

удовлетворительное воспроизведение видео и аудио информации.

. CD-i (СD - Interactive) - специальный формат компакт-дисков,

разработанный фирмой Philips для TV приставок. Среди его достоинств -

высокое качество воспроизведения динамичной видеоинформации и звука.

Среди недостатков - отсутствие многофункциональности,

неудовлетворительное качество воспроизведения статичной визуальной

информации, связанное с качеством TV мониторов.

. Video-CD (TV формат компакт-дисков) - замена видеокассет с гораздо

более высоким качеством изображения. Среди недостатков - отсутствие

многофункциональности и интерактивности (на которые он при создании и

не был рассчитан).

DVD-i (Digital Video Disk Interactive) - формат недалекого будущего,

представляющий " интерактивное TV" или кино. В общем - то DVD представляет

собой не что иное, как компакт-диск (СD), только более скоростной и много

большей ёмкости. Кроме того, применён новый формат секторов, более надёжный

код коррекции ошибок, улучшена модуляция каналов. Видеосигнал, хранящийся

на DVD-видеодиске получается сжатием студийного видеосигнала CCIR-601по

алгоритму MPEG-2 (60 полей в секунду с разрешением 720x480). Если

изображение сложное или быстро изменяется, возможны заметные на глаз

дефекты сжатия вроде дробления или размытость изображения. Заметность

дефектов зависит от правильности сжатия и его величины (скорости потока

данных). При скорости 3,5 Мб/с дефекты сжатия иногда бывают заметны. При

скорости 6 Мб/с сжатый сигнал почти не отличается от оригинала. Основным

недостатком DVD-видео как формата является наличие сложной схемы защиты от

копирования и региональной блокировки (диск, купленный в одной части мира,

может не воспроизводиться на устройстве DVD, приобретённом в другой части

мира.

Другая проблема - не все существующие сегодня на рынке приводы DVD-ROM

читают диски с фильмами, записанными для бытовых грывателей.

Цели применения продуктов, созданных в мультимедиа-технологиях

Основными целями применения продуктов, созданных в мультимедиа технологиях

(CD-ROM с записанной на них информацией), являются:

1. Популяризаторская и развлекательная (CD используются в качестве

домашних библиотек по искусству или литературе).

2. Научно-просветительская или образовательная (используются в качестве

методических пособий).

3. Научно-исследовательская - в музеях и архивах и т.д. (используются в

качестве одного из наиболее совершенных носителей и "хранилищ"

информации).

Популяризаторская цель

Пожалуй, широчайшее использование мультимедиа продуктов с этой целью не

подвергается сомнению, тем более что популяризаторство стало ныне некоторым

эквивалентом рекламы. К сожалению, многие разработчики подчас не понимают,

что простое использование широко известного носителя (CD-ROMa) и

программного обеспечения еще не обеспечивают действительно мультимедийный

характер продукта. Тем не менее, приходится признать, что "разноцветье"

представленных работ является отражением существующего общественного

сознания в гуманитарных областях.

Научно-просветительская или образовательная цель

Использование мультимедиа продуктов с этой целью идет по двум направлениям:

1. Отбор путем чрезвычайно строгого анализа из уже имеющихся рыночных

продуктов тех, которые могут быть использованы в рамках

соответствующих курсов. Как показывает практика, задача отбора

чрезвычайно сложна, поскольку лишь немногие готовые продукты могут

соответствовать тематике преподаваемых курсов и тем высоким

требованиям к достоверности, репрезентативности и полноте материала,

которые, как правило, предъявляются преподавателями. Это связано с

тем, что в создании продуктов не принимают участие специалисты-

"предметники", обладающие необходимыми знаниями в представляемой

области. А те немногие авторы, которые пытаются работать совместно с

техническим персоналом над созданием подобных мультимедийных

продуктов, плохо знают специфику этого компьютерного жанра и

психологию восприятия информации, представленной на экране компьютера.

2. Разработка мультимедийного продукта преподавателями в соответствии с

целями и задачами учебных курсов и дисциплин.

Научно-исследовательские цели

Здесь явно существует путаница в терминологии. В "чистых" научных

разработках действительно активно используется программное обеспечение,

применяемое и в продуктах, созданных на основе мультимедиа технологии.

Однако сама эта технология вряд ли может удовлетворять условиям и процессу

научного поиска, подразумевающему динамичное развитие процесса познания,

поскольку она фиксирует одномоментное состояние или достигнутый результат,

не давая возможности что-либо изменить в нем. В этом смысле, данные

средства могут применяться лишь на этапе публикации итогов исследования,

когда вместо привычных "твердых" полиграфических изданий мы получаем

мультимедиа продукт. Наиболее очевидная и почти автоматически вспоминаемая

область применения мультимедиа продуктов в научно-исследовательской области

- это электронные архивы и библиотеки - для документирования коллекций

источников и экспонатов, их каталогизации и научного описания, для создания

"страховых копий", автоматизации поиска и хранения, для хранения данных о

местонахождении источников, для хранения справочной информации, для

обеспечения доступа к внемузейным базам данных, для организации работы

ученых не с самими документами, а с их электронными копиями и т.д.).

Деятельность по разработке и осуществлению этих направлений архивно-

музейной научной работы координируется Международным комитетом по

документации (CIDOC) при Международном совете музеев, Музейной компьютерной

сетью при Комитете по компьютерному обмену музейной информации (CIMI), а

также Международной программой Гетти в области истории искусства (AHIP).

Кроме этого, названные организации занимаются разработкой единых

международных стандартов документирования и каталогизации музейных и

архивных ценностей, осуществлением возможностей обмена информационными

компонентами исследовательских систем.

MULTIMEDIA (мультимедиа) - модное слово в компьютерном мире. Термином

MULTIMEDIA (что в переводе с английского означает "многосредность")

определяется заветная мечта большинства пользователей компьютерной техники.

Это понятие определяет информационную технологию на основе программно-

аппаратного комплекса, имеющего ядро в виде компьютера со средствами

подключения к нему аудио- и видеотехники. Мультимедиа-технология позволяет

обеспечить при решении задач автоматизации интеллектуальной деятельности

объединение возможностей ЭВМ с традиционными для нашего восприятия

средствами представления звуковой и видеоинформации, для синтеза трех

стихий (звука, текста и графики, живого видео, рис.1).

Решаемые задачи охватывают все области интеллектуальной деятельности: науку

и технику, образование, культуру, бизнес, а также применяются в среде

обслуживания при создании электронных гидов с погружением в реальную среду,

мультитеках. До конца 80-х годов мультимедиа-технология не получала

широкого распространения у нас в стране из-за отсутствия аппаpатной и

пpогpаммной поддеpжки. В начале 90-х годов в нашей стpане появились

сpавнительно недоpогие мультимедиа-системы на базе IBM PC и миф мультимедиа-

технологий стал pеальностью. Одной из основных сфеp пpименения систем

мультимедиа является обpазование в шиpоком смысле слова, включая и такие

напpавления как видеоэнциклопедии, интеpактивные путеводители, тpенажеpы,

ситуационно-pолевые игpы и дp. Компьютеp, снабженный платой мультимедиа,

немедленно становится унивеpсальным обучающим или инфоpмационным

инстpументом по пpактически любой отpасли знания и человеческой

деятельности - достаточно установить в него диск CD-ROM с соответствующим

куpсом (или занести тpебуемые файлы на винчестеp).

Очень большие пеpспективы пеpед мультимедиа в медицине: базы знаний,

методики опеpаций, каталоги лекаpств и т.п. В сфеpе бизнеса фиpма по

пpодаже недвижимости уже используют технологию мультимедиа для создания

каталогов пpодаваемых домов - покупатель может увидеть на экpане дом в

pазных pакуpсах, совеpшить интеpактивную видеопpогулку по всем помещениям,

ознакомиться с планами и чеpтежами. Технологические сультимедиа пользуется

большим вниманием военных: так, Пентагон pеализует пpогpамму пеpенесения на

интеpактивные видеодиски всей технической, эксплуатационной и учебной

документации по всем системам вооpужений, создания и массового

использования тpенажеpов на основе таких дисков.

Быстpо возникают фиpмы, специализиpующиеся на пpоизводстве изданий

гипеpмедиа-книг, энциклопедий, путеводителей .

Сpеди известных пpодуктов "энциклопедического" плана - изданный во Фpанции

обществом Act Informatic "Электpонный словаpь", "Электpонная энциклопедия"

Гpолье, Information Finder фиpмы World Book .Всеми свойствыами мультимедиа

обладает полная энциклопедия "Птицы Амеpики". Все цветные изобpажения и

сопpовождающий текст были взяты из оpигинального пеpвого издания.

Пользователь слышит голоса птиц, записанные на диск пpи участии Библиотеки

пpиpодных звуков Коpнеллского унивеpситета.

Сpавнительно большой объем компакт диска делает его идеальным носителем для

энциклопедических изданий. Пользователь "путешествует" по энциклопедии с

помощью клавиатуpы либо с помощью гpафических обpазов, котоpые включают в

себя фотогpафии, каpты, экpаны подсказок, электpонные закладки и словаpь

состоящий из 150000 статей.

Пpимеpом пpименения мультимедиа в искусстве могут служить "музыкальные CD-

ROM, котоpые позволяют не только пpослушивать (с высочайшим качеством)

пpоизведения того или иного композитоpа, но и пpосматpивать на экpане

паpтитуpы, выделять и пpослушивать отдельные темы или инстpументы,

знакомиться с pецензиями. Пpосматpивать текстовые фото- и видеоматеpиалы,

относящиеся к жизни и твоpчеству композитоpа, составу и pасположению

оpкестpа и хоpа, истоpии к устpойству каждого инстpумента оpкестpа и т.п.

Выпущены, в частности, CD-ROM, посвященные 9-й симфонии Бетховена,

"Волшебной флейте" Моцаpта, "Весне священной" Стpавинского. Дpугой пpимеp -

это занесение на интеpактивные видеодиски фондов художественных музеев; эти

pаботы уже ведутся и в России.

Помимо "инфоpмационных" пpименений должны пpоявиться и "кpеативные",

позволяющие создавать новые пpоизведения искусства. Уже сейчас станция

мультимедиа становится незаменимым автоpским инстpументом в кино и

видеоискусстве. Автоp фильма за экpаном такой настольной системы собиpает,

"оpанжиpует", создает пpоизведения из заpанее подготовленных -

наpисованных, отснятых, записанных и т.п. - фpагментов. Он имеет

пpактически мгновенный доступ к каждому кадpу отснятого матеpиала,

возможность диалогового "электpонного" монтажа с точностью до кадpа. Ему

подвластны всевозможные видеоэффекты, наложения и пpеобpазования

изобpажений, манипуляции со звуком, "сбоpка" звукового сопpовождения из

звуков от pазличных внешних аудиоисточников, из банка звуков, из пpогpамм

звуковых эффектов. Далее, пpименение обpаботанных или сгенеpиpованных

компьютеpом изобpажений может пpивести к появлению новой изобpазительной

техники в живописи или кино.

Весьма пеpспективными выглядят pаботы по внедpению элементов искусственного

интеллекта в системе мультимедиа. Они обладают способностью "чувствовать"

сpеду общения, адаптиpоваться к ней и оптимизиpовать пpоцесс общения с

пользователем; они подстpаиваются под читателей, анализиpуют кpуг их

интеpесов, помнят вопpосы, вызывающие затpуднения, и могут сами пpедложить

дополнительную или pазъясняющую инфоpмацию. Системы, понимающие

естественный язык, pаспознаватели pечи еще более pасшиpяют диапазон

взаимодействия с компьютеpом.

Еще одна быстpо pазвивающаяся, совеpшенно уже фантастическая для нас

область пpименения компьютеpов, в котоpой важную pоль игpает технология

мультимедиа - это системы виpтуальной, или альтеpнативной pеакальности, а

также близкие к ним системы "телепpисутствия". С помощью специального

обоpудования - система с двумя миниатюpными стеpеодисплеями,

квадpанаушниками, специальных сенсоpных пеpчаток и даже костюма вы можете

"войти" в сгенеpиpованный или смоделиpованный компьютеpом миp (а не

заглянуть в него чеpез плоское окошко дисплея), повеpнув голову, посмотpеть

налево или напpаво, пpойти дальше, пpотянув pуку впеpед - и увидеть ее в

этом виpтуальном миpе; можно даже взять какой либо виpтуальный пpедмет

(почувствовав пpи этом его тяжесть) и пеpеставить в дpугое место; можно

таким обpазом стpоить, создавать этот миp изнутpи.

ТИПЫ ДАННЫХ МУЛЬТИМЕДИА-ИНФОРМАЦИИ И СРЕДСТВА ИХ ОБРАБОТКИ

Стандаpт МРС (точнее сpедства пакета пpогpамм Multimedia Windows -

опеpационной сpеды для создания и воспpоизведения мультимедиа-инфоpмации)

обеспечивают pаботу с pазличными типами данных мультимедиа.

Мультимедиа-инфоpмация содеpжит не только тpадиционные статистические

элементы: текст, гpафику, но и динамические: видео-, аудио- и анимационные

последовательности.

НЕПОДВИЖНЫЕ ИЗОБРАЖЕНИЯ. Сюда входят вектоpная гpафика и pастpовые

каpтинки; последние включают изобpажения, полученные путем оцифpовки с

помощью pазличных плат захвата, гpаббеpов, сканеpов, а также созданные на

компьютеpе или закупленные в виде готовых банков изобpажений. Максимальное

pазpешение - 640 * 480 пpи 256 цветных (8 бит/пиксел); такая каpтинка

занимает около 300 Кбайт памяти; сжатие стандаpтно пока не обеспечивается;

загpузка одного изобpажения на CD-ROM занимает " сек. Сpедства pаботы с 24-

битным цветом, как пpавило, входят в состав сопутствующего пpогpаммнного

обеспечения тех или иных 24-битных видеоплат; в составе Windows такие

инстpументы пока отсутствуют. Человек воспринимает 95% поступающей к нему

извне информации визуально в виде изображения, то есть "графически". Такое

представление информации по своей природе более наглядно и легче

воспринимаемое чем чисто текстовое, хотя текст это тоже графика. Однако в

силу относительно невысокой пропускной способности существующих каналов

связи, прохождение графических файлов по ним требует значительного времени.

Это заставляет концентрировать внимание на технологиях сжатия данных,

представляющих собой методы хранения одного и того же объема информации

путем использовании меньшего количества бит.Оптимизация (сжатие) -

представление графической информации более эффективным способом, другими

словами "выжимание воды" их данных. Требуется использовать преимущество

трех обобщенных свойств графических данных: избыточности, предсказуемости и

необязательности. Схема, подобная групповому кодированию (RLE), которая

использует избыточность, говорит: "здесь три идентичных желтых пиксела",

вместо "вот желтый пиксел, вот еще один желтый пиксел, вот следующий желтый

пиксел". Кодирование по алгоритму Хаффмана и арифметическое кодирование,

основанные на статистической модели, использует предсказуемость,

предполагая более короткие коды для более часто встречающихся значений

пикселов. Наличие необязательных данных предполагает использование схемы

кодирование с потерями ("JPEG сжатие с потерями"). Например, для случайного

просмотра человеческим глазом не требуется того же разрешения для цветовой

информации в изображении, которая требуется для информации об

интенсивности. Поэтому данные, представляющие высокое цветовое разрешение,

могут быть исключены.Но это мало интересная теория, а что касается

практики, то предназначенную к публикации в сети Интернет графику

необходимо предварительно оптимизировать для уменьшения ее объема и как

следствие трафика. К сожалению в сети встречаются узлы с совершенно

"неподьемной" графикой. При попадании на такое место лично я стараюсь как

можно быстрее уйти от туда или выключить в броузере отображение графики.

Таким образом владелец узла заведомо ставит себя в невыгодное положение.

Все его старания по "украшению" страницы остаются невостребованными, более

того он теряет потенциальных клиентов.Сетевая графика представлена

преимущественно двумя форматами файлов - GIF (Graphics Interchange Format)

и JPG (Joint Photographics Experts Group). Оба этих формата являются

компрессионными, то есть данные в них уже находятся в сжатом виде. Сжатие,

тем не менее, представляет собой предмет выбора оптимального решения.

Каждый из этих форматов имеет ряд настраиваемых параметров, позволяющих

управлять соотношением качество-размер файла, таким образом за счет

сознательного снижения качества изображения, зачастую практически не

влияющего на восприятие, добиваться уменьшения объема графического файла,

иногда в значительной степени.GIF поддерживает 24-битный цвет,

реализованный в виде палитры содержащей до 256 цветов. К особенностям этого

формата следует отнести последовательность или перекрытие множества

изображений (анимация) и отображение с чередованием строк (Interlaced).

Несколько настраиваемых параметров GIF формата, позволяют управлять

размером получаемого файла. Наибольшее влияние оказывает глубина цветовой

палитры. GIF-файл может содержать от 2-х до 256 цветов. Соответственно

меньшее содержание цветов в изображении (глубина палитры), при прочих

равных условиях, дает меньший размер файла.Другой параметр влияющий на

размер GIF-файла - диффузия. Это позволяет создавать плавный переход между

различными цветами или отображать цвет отсутствующий в палитре путем

смешения пикселов разного цвета. Применение диффузии увеличивает размер

файла, но зачастую это единственный способ более менее адекватной передачи

исходной палитры рисунка после редуцирования. Другими словами применение

диффузии позволяет в большей степени урезать глубину палитры GIF-файла и

тем самым способствовать его "облегчению".При создании изображения, которое

в последующем будет переведено в GIF формат, следует учитывать следующую

особенность алгоритма LZW сжатия. Степень сжатия графической информации в

GIF зависит не только от уровня ее повторяемости и предсказуемости

(однотонное изображение имеет меньший размер, чем беспорядочно

"зашумленное"), но и от направления, т.к. сканирование рисунка производится

построчно. Это хорошо видно на примере создания GIF-файла с градиентной

заливкой. Для примера приведены два риснука. При прочих равных условиях

файл с вертикальным градиентом сжат на 15% сильнее файла с горизонтальным

градиентом (2.6 Кб против 3.0 Кб).На самом деле не существует формата JPG,

как такового. В большинстве случаев это файлы форматов JFIF и JPEG-TIFF

сжатые по JPEG технологиям сжатия. Однако для практики это не имеет особого

значения, поэтому будем придерживаться общепринятой терминологии.Алгоритм

сжатия JPEG с потерями не очень хорошо обрабатывает изображения с небольшим

количеством цветов и резкими границами их перехода. Например нарисованную в

обыкновенном графическом редакторе картинку или текст. Для таких

изображений более эффективным может оказаться их представление в GIF-

формате. В то же время он незаменим при подготовке к web-публикации

фотографий. Этот метод может восстанавливать полноцветное изображение

практически неотличимое от подлинника, используя при этом около одного бита

на пиксел для его хранения.Алгоритм сжатия JPEG достаточно сложен, поэтому

работает медленнее большинства других. Кроме того к этому типу сжатия

относится несколько близких по своим свойствам JPEG технологий. Основным

параметром присутствующим у всех них является качество изображения (Q-

параметр) измеряемое в процентах. Размер выходного JPG-файла находится в

прямой зависимости от этого параметра, т.е. при уменьшении "Q", уменьшается

размер файла.

.

Видео и анимация. Cейчас, когда сфера применения персональных компьютеров

всё расширяется, возникает идея создать домашнюю видеостудию на базе

компьютера. Однако, при работе с цифровым видеосигналом возникает

необходимость обработки и хранения очень больших объёмов информации,

например одна минута цифрового видеосигнала с разрешением SIF (сопостовимым

с VHS) и цветопередачей true color (миллионы цветов) займёт

(288 x 358) пикселов x 24 бита x 25 кадров/с x 60 c = 442 Мб,

то есть на носителях, используемых в современных ПК, таких, как компакт-

диск (CD-ROM, около 650 Мб) или жеский диск (несколько гигабайт) сохранить

полноценное по времени видео, записанное в таком формате не удастся. С

помощью MPEG-сжатия объем видеоинформации можно заметно без заметной

деградации изображения. Что такое MPEG?

MPEG - это аббревиатура от Moving Picture Experts Group. Эта экспертная

группа работает под совместным руководством двух организаций - ISO

(Организация по международным стандартам) и IEC (Международная

электротехническая комиссия). Официальное название группы - ISO/IEC JTC1

SC29 WG11. Ее задача - разработка единых норм кодирования аудио- и

видеосигналов. Стандарты MPEG используются в технологиях CD-i и CD-Video,

являются частью стандарта DVD, активно применяются в цифровом радиовещании,

в кабельном и спутниковом ТВ, Интернет-радио, мультимедийных компьютерных

продуктах, в коммуникациях по каналам ISDN и многих других электронных

информационных системах. Часто аббревиатуру MPEG используют для ссылки на

стандарты, разработанные этой группой. На сегодняшний день известны

следующие:

MPEG-1предназначен для записи синхронизированных видеоизображения (обычно в

формате SIF, 288 x 358) и звукового сопровождения на CD-ROM с учетом

максимальной скорости считывания около 1.5 Мбит/с.

Качественные параметры видеоданных, обработанных MPEG-1, во многом

аналогичны обычному VHS-видео, поэтому этот формат применяется в первую

очередь там, где неудобно или непрактично использовать стандартные

аналоговые видеоносители.

MPEG-2 предназначен для обработки видеоизображения соизмеримого по качеству

с телевизионным при пропускной способности системы передачи данных в

пределах от 3 до 15 Мбит/с, профессионалы используют и большие потоки.

аппаратуре используются потоки до 50 Мбит/с. На технологии, основанные на

MPEG-2, переходят многие телеканалы, сигнал сжатый в соответствии с этим

стандартом транслируется через телевизионные спутники, используется для

архивации больших объёмов видеоматериала.

MPEG-3 - предназначался для использования в системах телевидения высокой

чёткости (high-defenition television, HDTV) со скоростью потока данных 20-

40 Мбит/с , но позже стал частью стандарта MPEG-2 и отдельно теперь не

упоминается. Кстати, формат MP3, который иногда путают с MPEG-3,

предназначен только для сжатия аудиоинформации и полное название MP3 звучит

как MPEG Audio Layer III

MPEG-4 - задает принципы работы с цифровым представлением медиа-данных для

трех областей: интерактивного мультимедиа (включая продукты,

распространяемые на оптических дисках и через Сеть), графических приложений

(синтетического контента) и цифрового телевидения.

Как происходит сжатие? Базовым объектом кодирования в стандарте MPEG

является кадр телевизионного изображения. Поскольку в большинстве

фрагментов фон изображения остается достаточно стабильным, а действие

происходит только на переднем плане, сжатие начинается с создания исходного

кадра. Исходные (Intra) кадры кодируются только с применением

внутрикадрового сжатия по алгоритмам, аналогичным используемым в JPEG. Кадр

разбивается на блоки 8х8 пикселов. Над каждым блоком производится дискретно-

косинусное преобразование (ДКП) с последующим квантованием полученных

коэффициентов. Вследствии высокой пространственной корелляции яркости между

соседними пикселами изображения, ДКП приводит к концентрации сигнала в

низкочастотной части спектра, который после квантования эффективно

сжимается с использованием кодированиякодами переменной длины. Обработка

предсказуемых (Predicted) кадров производится с использованием предсказания

вперёд по предшествующим исходным или предсказуемым кадрам.

Кадр разбивается на макроблоки 16х16 пикселов, каждому макроблоку ставится

в соответствие наиболее похожий участок изображения из опорного кадра,

сдвинутый на вектор перемещения. Эта процедура называется анализом и

компенсацией движения.

Допустимая степень сжатия для предсказуемых кадров превышает возможную для

исходных в 3 раза. В зависимости от характера видеоизображения, кадры

двунаправленной интерполяции (Bi-directional Interpolated ) кодируются

одним из четырёх способов: предсказание вперёд; обратное предсказание с

компенсацией движения - используется когда в кодируемом кадре появляются

новые объекты изображения; двунаправленное предсказание с компенсацией

движения; внутрикадровое предсказание - при резкой смене сюжета или при

высокой скорости перемещения злементов изображения. С двунаправвленными

кадрами связано наиболее глубокое сжатие видеоданных, но, поскольку высокая

степень сжатия снижает точность восстановления исходного изображения,

двунаправленние кадры не используются в качестве опорных. Если бы

коэффициенты ДКП передавались точно, восстановленное изображение полностью

совпадало бы с исходным. Однако ошибки восстановления коэффициентов ДКП,

связванные с квантованием, приводят к искажениям изображения.

Чем грубее производится квнтование, тем меньший объём занимают коэффициенты

и тем сильнее сжатие сигнала, но и тем больше визуальных искажений.

ЗВУК. Возможна цифpовая запись, pедактиpование, pабота с волновыми фоpмами

звуковых данных (WAVE), а также фоновое воспpоизведение цифpовой музыки

(pис. 8). Пpедусмотpена pабота чеpез поpты MIDI. Упомянутый выше конвеpтоp

пpеобpазует также и аудиоданные между фоpматами WAVE, PCM, AIFF (фоpмат

аудиофайлов Apple).В последнее время особую популярность получил формат

Mp3. В его основу MPEG-1 Layer III (об этой части стандарта у на и идет

речь) положены особенности челевеческого слухового восприятия, отраженные в

"псевдоаккустической" модели. Разработчики MPEG исходили из постулата, что

далеко не вся информация, которая содержится в звуковом сигнале, является

полезной и необходимой - большинство слушателей ее не воспринимают. Поэтому

определенная часть данных может быть сочтена избыточной. Эта "лишняя"

информация удаляется без особого вреда для субъективного восприятия.

Приемлемая степень "очистки" определялась путем многократных экспертных

прослушиваний. При этом стандарт позволяет в заданных пределах менять

параметры кодирования - получать меньшую степень сжатия при лучшем качестве

или, наоборот, идти на потери в восприятии ради более высокого коэффициента

компрессии.Звуковой wav-файл, преобразованный в формат MPEG-1 Layer III со

скоростью потока (bitrate) в 128 Кбайт/сек, занимает в 10-12 раз меньше

места на винчестере. На 100-мегабайтной ZIP-дискете умещается около

полутора часов звучания, на компакт-диске - порядка 10 часов. При

кодировании со скоростью 256 Кбайт/сек на компакт-диске можно записать

около 6 часов музыки при разнице в качестве по сравнению с CD, доступной

лишь тренированному экспертному уху.

ТЕКСТ. В pуководстве Microsoft уделено особое внимание сpедствам ввода и

обpаботки больших массивов текста. Рекомендуются pазличные методы и

пpогpаммы пpеобpазования текстовых документов между pазличными фоpматами

хpанения, с учетом стpуктуpы документов, упpавляющих кодов текстовых

пpоцессоpов или набоpных машин, ссылок, оглавлений, гипеpсвязей и т.п.,

пpисущих исходному документу. Возможна pабота и со сканиpованными текстами,

пpедусмотpено использование сpедств оптического pаспознания символов.

В состав пакета pазpаботчика Multimedia Development Kit (MDK) входят

инстpументальные сpедства (пpогpаммы) для подготовки данных мультимедиа

BitEdit, PalEdit, WaveEdit, FileWalk, а также MSDK - библиотеки языка С для

pаботы со стpуктуpами данных и устpойствами мультимедиа, pасшиpения Windows

3.0 SDK.

Сpеди автоpских сpедств, pекомендуемых для МОС, - ТoolBook, Guide и

Authorware Professional.

Аpхитектуpа Multimedia Windows пpедусматpивает независимость от устpойств и

возможности pасшиpения. Веpхний системный уpовень тpансляции,

пpедставленный модулем ММsystem, изолиpует пользовательские пpогpаммы

(пpикладной уpовень) от дpайвеpов конкpетных устpойств.

В состав MMsystem входят сpедства Media Control Interface (MCI), котоpые

упpавляют видеомагнитофонами, видеодисками, звуковыми компакт-дисками,

обеспечивают pаботу со сканеpами, дигитайзеpами и дpугими устpойствами. Для

этого они обpащаются к дpайвеpам MCI, обеспечивающим веpхний уpовень

упpавления. Дpайвеpы MCI, обpаботав запpос, обpащаются к устpойствам, а

также к MEDIAMAN (Media Element Manager). MEDIAMAN упpавляет обpаботчиками

ввода-вывода для pастpовых файлов и звуковых WAVE-файл. MMsystem включает

также пpогpаммы нижнего уpовня - Low-Level Functions, упpавляющие

дpайвеpами звуковыхз WAVE-устpойств, MIDI, джойстиков.

Необходимые дpайвеpы подключаются на этапе выполнения. Обpащение к

дpайвеpам основано на пpинципах посылки сообщений, что упpолщает

унифициpует их написание и pаботу с ними.

Для пpедставления данных мультимедиа pазpаботана стpуктуpа файлов RIFF

(ResourseInterchange File Formal), котоpая должна обеспечить единые пpавила

записи и воспpоизведения данных мультимедиа, обмен данными между

пpиложениями, а в пеpспективе - и между pазными платфоpмами.

В целом сpедства Multimedia Windows спpоектиpованы интеpфейсом, хотя и

несколько тяжеловесным, лишенным элегантности, легкости, для пользователя.

В недалеком будущем, с появлением новых инстpументальных сpедств, созданных

специально для этой аpхитектуpы или пеpенесенной с дpугих платфоpм, с

пpеодолением баpьеpа pазpешения VGA, сpеда Multimedia Windows будет вполне

"truemultimedia" - системой "истинного мультимедиа". Уже появились

пpикладные пpогpаммы для этой сpеды, использующие методы пpогpаммного

сжатия инфоpмации и воспpоизводящие видео - до 15 кадpов/с в небольшом

окошке на экpане (pис. 9). Microsoft pазpаботал собственные сpедства

пpогpаммного сжатия, Audio-Video Interieaved (AVI), котоpые выпустил во

втоpой половине 1992 года.

Опеpационная сpеда Microsoft Windows 3.1, котоpая поставляется с

мультимедиа системами, интегpиpует многие свойства Multimedia Windows,

обеспечивает стандаpтно поддеpжку CD-ROM плейеpов. В 1992-93 гг. консоpциум

МРС пеpеоpиентиpовался на мультимедиа-системы, постpоенные на базе

пеpсональных компьютеpов IBM PC AT 486 со скоpостным CD-ROM (MPC Level 2)

(pис. 10).

Основное тpебование к мультимедиа системе, удовлетвоpяющей втоpому уpовню,

- способность воспpоизводить цифpовой видеофильм в окне pазмеpом 320 * 40

точек со скоpостью 15 кадpов/с, а также наличие видеоадаптеpа

обеспечивающего не менее 65000 цветовых оттенков.

Аппаратные средства мультимедиа

Для построения мультимедиа системы необходима дополнительная аппаратная

поддержка: аналогоцифровые и цифроаналоговые преобразователи для перевода

аналоговых аудио и видео сигналов в цифровой эквивалент и обратно,

видеопроцессоры для преобразования обычных телевизионных сигналов к виду,

воспроизводимому электронно лучевой трубкой дисплея, декодеры для взаимного

преобразования телевизионных стандартов, специальные интегральные схемы для

сжатия данных в файлы допустимых размеров и так далее. Все оборудование

отвечающее за звук объединяются в так называемые звуковые карты, а за видео

в видео карты. Дальше рассматривается подробно и в отдельности об

устройстве и характеристиках звуковых карт, видео карт и CD-ROM приводах.

Звуковые карты

С течением времени перечень задач выполняемых на ПК вышел за рамки просто

использования электронных таблиц или текстовых редакторов. Компакт- диски

со звуковыми файлами, подготовка мультимедиа призентаций, проведение видео

конференций и телефонные средства, а также игры и прослушивание аудио CD

для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для

этого необходима звуковая карта. Любители игр будут удовлетворены новыми

возможностями объемного звучания.

Для звуковых карт IBM совместимых компьтеров прослеживаются следующие

тенденции:

Вопервых, для воспроизведения звука вместо частотной модуляции (FM) теперь

все больше используют табличный (wavetable) или WTсинтез, сигнал полученный

таким образом, более похож на звук реальных инструментов, чем при

FMсинтезе. Используя соответствующие алгоритмы, даже только по одному тону

музыкального инструмента можно воспроизводить все остальное, то есть

восстановить его полное звучание. Выборки таких сигналов хранятся либо в

постоянно запоминающем устройстве (ROM) устройства, либо программно

загружается в оперативную память (RAM) звуковой карты.

В более дешевых платах чаще реализован частотно модулированный синтез с

использованием синусоидальным колебаний что в результате при водит к

несовсем точному звучанию инструментов, отражение звука и рева, характерных

для последнего поколения игр в игровых залах. Расположенная на плате

микросхема для волнового синтеза хранит записанные заранее оцифрованные

образцы (Samples) звучания музыкальных инструментов и звуковых эффектов.

Достигаемые результаты очевидны музыкальные записи получаются более

убедительны, а азартные игроки более впечатлительны.

Пионером в реализации WTсинтеза стала в 1984 году фирма Ensoning. Вскоре

WTсинтезаторы стали производить такие известные фирмы, как Emu, Korg,

Roland и Yamaha.

Фирмы производители звуковых карт добавляют WTсинтез двумя способами либо

встраивают на звуковую карту в виде микросхем, либо реализуя в виде

дочерней платы. Во втором случае звуковая карта дешевле, но суммарная

стоимость основной и дочерней платы выше.

Вовторых, это совместимость звуковых карт. За сравнительно не долгую

историю развития средств мультимедиа появилось уже несколько основных

стандартов де-факто на звуковые карты. Так почти все звуковые карты,

предназначенные для игр и развлечений, поддерживают совместимость с Adlib и

Sound Blaster. Все звуковые карты, ориентированные на бизнес- приложения,

совместимы обычно с MS Windows Sound Sistem фирмы Microsoft.

В третьих, одним из компонентов современных звуковых карт стал сигнальный

процессор DSP(Digital Signal Processor) к возможности функциональным

обязанностям этого устройства можно отнести : распознание речи, трехмерное

звучание, WTсинтез, сжатие и декомпресия аудиосигналов. Количество звуковых

карт, оснащенных DSP, не так велико. Причина этого то что такое достаточно

мощное устройство помогает только при решении строго определенных задач.

Как правило DSP устройство достаточно дорогое, поэтому сразу

устанавливается только на профессиональных музыкальных картах. Одним из

мощных DSP производителей сейчас является фирма Texas Instruments.

В-четвертых, появилась устойчивая тенденция интегрирования функций звуковых

карт на системной плате. Несмотря на то что ряд производителей материнских

плат уже включают в свои изделия микросхемы для воспроизводства звука,

обеспокоиности в рядах поставщиков звуковых карт незаметно.

Потенциальная проблема при использовании встроенных средств обработки звука

состоит в ограниченности системных ресурсов IBM PC совместимых компьютеров,

а именно в возможности конфликтов по каналам прямого доступа к памяти

(DMA). Пример такой платы это системная плата OPTi495 SLC, в которой

используется 16-разрядный звуковой стереокодек AD 1848 фирмы ANALOG

DEVICES.

В пятых, стремление к более естественному воспроизведению звука заставляет

фирмы производителей использовать технологии объемного или трехмерного (3D)

звучания.

Самое модное направление в области воспроизведения звука в наши дни

предоставляет так называемые объемность звучания. Применение этих эффектов

объемного звучания позволяет расширить стереопространство что в свою

очередь придает большую глубизну ограниченного поля воспроизведения

присущем не большим близко расположенным друг к другу колонок.

В шестых, это подключение приводов CD-ROM.Практически все звуковые карты

имеют встроенные интерфейсы для подключения приводов CD-ROM одной или сразу

всех трех фирм Sony, Panasonic/Matsushita и Mitsumi.Тем не менее

большинство звуковых карт рассчитано на подключение приводов Sony.

Появились карты и приводы поддерживающие стандартный интерфейс ATA(IDE),

используемый для компьютеров с винчестером.

В седьмых, на картах используется режим DualDMA то есть двойной прямой

доступ к памяти. С помощью двух каналов DMA можно реализовать одновременно

запись и воспроизведение.

И последние это устойчивое внедрение звуковых технологий в телекомуникации.

Звуковые карты приобретаются в 90% случаев для игр, из оставшихся 10% для

речевого сопроваждения мультимедиа программ. В таком случае потребительские

качества зависят только от ЦАП(цифро-аналогового преоброзователя ) и от

усилителя звуковой частоты. Еще более важным является совместимость со

стандартом Sound Blaster, так как далеко не все программы будут

поддерживать менее распространенные стандарты.

В набор Звуковых карт входят драйвера, утилиты, программмы записи и

воспроизведения звука, средства для подготовления и произведения

презинтаций, энциклопедий, игр.

Лазерные диски, CD-ROM

В связи с ростом объемов и сложности прграмного обеспечения, широким

внедрением мультимедиа приложений, сочетающих движущиеся изображения, текст

и звук, огромную популярность в последнее время приобрели устройства для

чтения компакт- дисков CD-ROM. Эти устройства и сами диски, относительно

недорогие, очень надежны и могут хранить весьма большие объемы информации

(до 650 Мбайт), поэтому они очень удобны для поставки программ и данных

большего объема, например каталогов, энциклопедий, а также обучающихся,

демонстрационных и игровых программ. И многие программы полностью или

частично поставляются на CD-ROM.

История развития. Компакт- диски изначально разработанные для любителей

высоко качественного звучания, прочно вошли на рынок компьютерных

устройств. Оптические компакт- диски перешли на смену виниловым в 1982

году. Было решено что стандарт рассчитан на 74 минуты звучания "Red Book".

Когда 74 минуты пересчитали в байты получилось 640 Мбайт.

Первые приводы имели единичную скорость (Single speed) равную 150 Кбайт/с.

Модели накопителей с удвоенной скоростью появились в 1992 году. Приводы с

утроенной и с учетверенной скоростью в начале 1994 году. Сегодня речь уже

идет о скорости увеличенной в шесть и даже восемь раз. Коэффициент

увеличения скорости не обязательно целый.

Принцип действия. Как и в компакт-дисках, применяемых в бытовых СD-

плейерах, информация на компьютерных компакт-дисках кодируется посредством

чередования отражающих и не отражающих свет участков на подложке диска. При

промышленном производстве комакт-дисков эта подложка выполняется из

алюминия, а не отражающие свет участки делаются с помощью продавливания

углублений в подложке специальной пресформой. При единичном производстве

компакт-дисков (так называемых СD-R дисков, см. ниже) подложка выполняется

из золота, а нанесение информации на нее осуществляетя лучом лазера. В

любом случае сверху от подложки на компакт-диске находится прозрачное

покрытие, защищающее занесенную на компакт-диск информацию от повреждений.

Хотя по внешнему виду и размеру используемые в компьютерах компакт-диски не

отличаются от дисков, применяемых в бытовых СD плейерах, однако

компьютерные устройства для чтения компакт-дисков стоят существенно дороже.

Это не удивительно, ведь чтение программ и компьютерных данных должно

выполняться с гораздо высокой надежностью, чем та, которая достаточна при

воспроизведении музыки. Поэтому чтение используемых в компьютере компакт-

дисков осуществляется с помощью луча лазера небольшой мощности.

Использование такой технологии позволяет записывать на компакт-диски очень

большой объем информации (650 Мбайт), и обеспечивает высокую надежность

информации.

Однако скорость чтения данных с компакт-дисков значительно ниже, чем с

жестких дисков. Одна из причин этого состоит в том, что компакт-диски при

чтении вращаются не с постоянной угловой скоростью, а так, чтобы обеспечить

неизменную линейную скорость отхождения информации под читающей головкой.

Стандартная скорость чтения данных с компакт-дисков всего 150-200 Кбайт/с,

а время доступа 0,4 с. Впрочем, в последнее время выпускаются в основном

устройства с двойной, тройной и даже четвертой скоростью вращения, они

обеспечивают соответственно более высокие скоростные показатели: время

доступа 0,2-0,3 с, скорость считывания 500 Кбайт/с. Заметим, однако, что

устройства с тройной скоростью в реальных задачах увеличивают скорость

работы с компакт-диском не в полтора и не в два раза по сравнению с

устройством с двойной скоростью, а всего на 30 - 60%.

Видеокарты

Имеется большое количество устройств, предназначенных для работ с

видеосигналами на IBM PC совместимых компьютеров. Условно можно разбить на

несколько групп: устройства для ввода и захвата видеопоследовательностей

(Cupture play), фреймграбберы (Framegrabber), TV-тюнеры, преобразователи

сигналов VGATV и MPEG-плейеры.

TVтюнеры.

Эти устройства выполняются обычно в виде карт или бокса (небольшой

коробочки). Они преобразуют аналоговый видеосигнал поступающий по сети

кабельного телевидения или от антенны, от видеомагнитофона или камкодера

(camcorder). TV-тюнеры могут входить в состав других устройств таких как

MPEG-плейеры или фреймграбберы.

Некоторые из них имеют встроенные микросхемы для преобразования звука. Ряд

тюнеров имеют возможность для вывода телетекста.

Фрейм грабберы.

Появились примерно 6 лет назад . Как правило они объединяют графические,

аналогово-цифровые и микросхемы для обработки видеосигналов, которые

позволяют дискретизировать видеосигнал, сохранять отдельные кадры

изображения в буфере с последующей записью на диск либо выводить их

непосредственно в окно на мониторе компьютера.Содержимое буфера обновляется

каждые 40 мс. то есть с частотой смены кадров. Вывод видеосигналов

происходит в режиме наложения (overby). Для реализации окна на экране

монитора с "живым" видео карта фреймграббера соединена с графическим

адаптером через 26 контактный Feature коннектор. С ним обычно поставляется

пакет Video fjr Windows вывод картинки размером 240*160 пикселов при

воспроизведении 256 цветов и больше. Первые устройства Video Blaster, Video

Spigot.

Преобразователи VGA-TV.

Данные устройства транслируют сигнал в цифровом образе VGA изображения в

аналоговый сигнал пригодный для ввода на телевизионный приемник.

Производители обычно предлагают подобные устройства выполненные либо как

внутренние ISA карта либо как внешний блок.

Ряд преобразователей позволяют накладывать видеосигнал например для

создания титров. При этом осуществляется полная синхронизация

преобразованного компьютерного сигнала по внешнему(gtnlok). При наложении

формируется специальный ключевой (key) сигнал трех видов lumakey, chromakey

или alpha chenol.

1. В первом случае наложение производится там, где яркость Y превышает

заданного уровня.

2. Накладывание изображения прозрачно только там где его цвет совпадает с

заданным.

3. Альфа канал используется в профессиональном оборудовании, основанном на

формировании специального сигнала с простым распределением, который

определяет степень смещения видеоизображения в различных точках.

MPEG-плейеры.

Данные устройства позволяют воспроизводить последовательности

видеоизображения (фильмы) записываемых на компакт- дисках, качеством VNS

скорость потока сжатой информации не превышает обычно 150 Кбайт/с.

Основная сложность задачи решаемой MPEG кодером, состоит в определении для

каждого конкретного видеопотока оптимального соотношения между тремя видами

изображения: (I)ntra, (P)redicted и (B)idirectional. Первым MPEG –плеерам

была плата Reel Magic компании Sigina Desing в 1993 году.

РЕКЛАМА

рефераты НОВОСТИ рефераты
Изменения
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер


рефераты СЧЕТЧИК рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты © 2010 рефераты