рефераты рефераты
Домой
Домой
рефераты
Поиск
рефераты
Войти
рефераты
Контакты
рефераты Добавить в избранное
рефераты Сделать стартовой
рефераты рефераты рефераты рефераты
рефераты
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты
 
МЕНЮ
рефераты Моделирование датчиков случайных чисел с заданным законом распределения рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Моделирование датчиков случайных чисел с заданным законом распределения

Моделирование датчиков случайных чисел с заданным законом распределения

Министерство Образования Республики Таджикистан

Таджикский Технический Университет

имени М.С. Осими

Кафедра «АСОИиУ»

Лабораторная работа №1

На тему: Моделирование датчиков случайных чисел с заданным законом распределения

Выполнила:

ст-т. 3-го курса гр. 2202 Б2

Принял: преподаватель кафедры

Ли И.Р.

Душанбе-2010

Лабораторная работа № 2

Моделирование датчиков случайных чисел с заданным законом распределения

I Цель работы

Целью работы является:

1. Практическое освоение методов моделирования случайных чисел с заданным законом распределения

2. Разработка и моделирование на ПЭВМ датчика случайных чисел с конкретным законом распределения

3. Проверка адекватности полученного датчика

II Теоретические сведения

1. Основные методы моделирования случайных последовательностей с заданным законом распределения

При исследовании и моделировании различных сложных систем в условиях действия помех возникает необходимость в использовании датчиков случайных чисел с заданным законом распределения. Исходным материалом для этого является последовательность x1,x2….xn с равномерным законом распределения в интервале [0,1]. Обозначим случайную величину, распределенную равномерно через ж(кси).

Тогда равномерно-распределенные случайные числа будут представлять собой независимые реализации случайной величины ж, которые можно получить с помощью стандартной функции RND (ж)- программно реализованной на ПЭВМ в виде генератора случайных чисел с равномерным законом распределения в интервале [0,1]. Требуется получить последовательность y1,y2,..yn независимых реализаций случайной величины з, распределенных по заданному закону распределения. При этом закон распределения непрерывной случайной величины может быть задан интегральной функцией распределения:

F(y)= P(ksiy) (1)

или плотностью вероятности

f(y)=F'(y) (2)

Функции f(y) и F(y) могут быть заданы графически или аналитически.

Для получения случайной величины з с функцией распределения F(y) из случайной величины ж, равномерно-распределенной в интервале [0,1], используются различные методы. К основным методам моделирования случайных чисел с заданным законом распределения относятся:

- метод обратной функции

- метод отбора или исключения

- метод композиции.

2. Метод обратной функции

Если ж- равномерно-распределенная на интервале [0,1] случайная величина, то искомая случайная величина может быть получена с помощью преобразования:

з=F-1 (ж) (3)

Где F-1 (ж) - обратная функция по отношению к функции распределения F(ж)

F(y)

1

ж

0 з y

Рис 1 Функция распределения F(ж)

Действительно, при таком определении случайной величины з имеем:

P(зy)=P{F-1(ж)y}=P{ ж F(y) }= F(y) (4)

В данной цепочке равенств первое равенство следует из (3), второе из неубывающего характера функций F(ж) и F-1 (ж) и третье из равномерного в интервале [0,1] распределения величин ж.

Таким образом, если задана функция распределения F(y), то для получения случайной последовательности с таким распределением необходимо найти ее обратную функцию.

Для нахождения обратной функции можно использовать два метода: аналитический и графический.

3.Метод отбора или исключения

Данный метод удобнее использовать, если требуемый закон распределения задан плотностью вероятности f(y). В отличии от метода обратной функции метод отбора или исключения для получения одного требуемого случайного числа требует не одного равномерно- распределенного случайного числа, а двух, четырех, шести или более случайных чисел. В этом случае область возможных значений з представляет конечный отрезок (a,b), а плотность вероятности f(y) ограничена сверху значением fmax (Рис.7). Тогда область значений з* и ж* можно ограничить ступенчатой кривой:

0, если y<a

g(y)= fmax, если a y b (25)

0, если y>b

Затем берутся с помощью генератора случайных чисел (RND(ж)) два равномерно-распределенных числа ж1 и ж2 , по которым определяются равномерные на интервале [a,b] независимые величины:

з '=a + (b-a)*ж1

ж'=fmax* ж2 (26)

Где a,b - границы возможных значений случайной величины з,

fmax- максимальное значение функции f(y) (Рис.7)

f(y) g(y)

fmax

f(y)

ж

a з ' b

Рис.7 Заданная плотность вероятности

Если ж' f (з ') , то з ' принимается в качестве очередной реализации случайной величины з. В противном случае з ' отбрасывается и берется следующая пара равномерно- распределенных случайных чисел ж1 и ж2 . Такая процедура повторяется до тех пор, пока мы не получим требуемого количества случайных чисел с заданной плотностью вероятности.

4. Метод композиции

Метод композиции основывается на представлении плотности вероятности fз (x) по формуле полной вероятности:

fз (x)= (27)

Где H(z)=P(жz)- интегральная функция распределения случайной величины ж;

P(x/z )- условная плотность вероятности.

Переходя к дискретной форме, интеграл заменяется на сумму и тогда получаем

fз (x)=Pj*fj (x) (28)

где Pj=1 (29)

fj (x) -условная плотность вероятности

Таким образом, для любой заданной плотности вероятности ее фигура единичной площади, ограниченной осью x и кривой fз(x), разбивается на произвольное число простых не пересекающихся частей gj (i=1,k),с площадями Pj (j=1,k), (Рис.8)

Рис.8Разбивка плотности вероятности на отдельном участке

fз(x)

g11)

g22) g33)

x

g11)

x

Рис. 9 Условные плотности

вероятности

g22)

x

g33)

x

Условные плотности вероятности имеют вид (Рис.9)

Для полученных условных плотностей вероятности одним из предыдущих методов определяются случайные последовательности, которые в сумме дадут требуемую случайную последовательность с заданной плотностью вероятности.

5. Оценка закона распределения

Для полученной случайной последовательности y1, y2,…,yn с заданным законом распределения необходимо провести оценку соответствия заданного закона распределения, который реализует смоделированный датчик случайных чисел. Поэтому для последовательности y1, y2,…,yn строится статистическая функция распределения

F* (y) (Рис. 10). На этом же графике строится интегральная функция распределения F(y) для заданного закона распределения и производится сопоставление F*(y) и F(y). Согласие закона проверяется по критерию Колмогорова. Для этого вычисляется статистика:

Ди=maxF*(y) - F(y) (30)

Для конечных решений и распределения статистики Ди получены пороговые значения в форме таблиц (Таблица 1.). По этой таблице для заданных объемов последовательности и и значению статистики Ди определяется уровень значимости .

Если гипотеза верна то статистика Ди* имеет в пределе при n распределение Колмогорова и квантили уровня P= (1-2) близки к 1. Это значит, что полученный генератор случайных чисел вырабатывает последовательность с заданным законом распределения. Если значения статистики Ди не попадают в пороговые значения, то такой генератор не годится для пользования.

F(y)

F(y) 1

F*(y)

0.5 Dn {

y

y1 y2 y3 y4 …….yn-1 yn

Рис.10Оценка распределения

III Содержание исследования

Исследование, проводимое в данной работе, заключается в получении программного датчика случайных чисел, пригодного для моделирования случайной последовательности с заданным законом распределения. При этом необходимо разработать алгоритм и программу датчика, а затем исследовать свойства выработанной им последовательности. При проведении исследований необходимо:

1.По двадцати числам (n=20) выведенным на печать построить статистическую функцию распределения F*(y)(рис.10) На этом же графике построить интегральную функцию распределения F(y) для заданного преподавателем закона распределения. Сопоставив значения F*(yF(y), вычислить статистику Ди (30).

2. Составить блок- схему и программу для ПЭВМ, в которой следует предусмотреть построение статистического ряда и вычисление статистики Ди по критерию Колмогорова.

3.По таблице пороговых значений статистики Ди произвести оценку распределения.

4. Для полученной последовательности произвести оценку математического ожидания, дисперсии, среднеквадратического отклонения.

Блок- схема генератора

Интерфейс программы:

Листинг программы:

Private Sub Command1_Click()

Dim n As Integer

Dim p1, p2 As Integer

Dim Y() As Variant, X As Double

p1 = 0: p2 = 0: m = 0: d = 0

List1.Clear

Randomize

X = 0.5

n = Val(Text1.Text)

ReDim Y(n) As Variant

For i = 1 To n

X = Rnd(X)

List1.AddItem ("x(" + Str(i) + ")=" + Str(X))

If X < 0.7 Then

p1 = p1 + 1

Y(i) = 2

m = m + Y(i)

List1.AddItem ("y(" + Str(i) + ")=" + Str(Y(i)))

Else

p2 = p2 + 1

Y(i) = 10 * X - 5

m = m + Y(i)

List1.AddItem ("y(" + Str(i) + ")=" + Str(Y(i)))

End If

Next i

List1.AddItem ("кол. точек с вер-ю 0.7: p1=" + Str(p1))

List1.AddItem ("кол. точек с вер-ю 0.3: p2=" + Str(p2))

List1.AddItem ("ВЕРОЯТНОСТИ:")

List1.AddItem (" 0.4<=x<0.7 --- 0" + Str(p1 / n))

List1.AddItem (" 0.7<=x<=1 --- 0" + Str(p2 / n))

m = m / n

List1.AddItem ("мат ожидание = " + Str(m))

For i = 1 To n

d = d + (Y(i) - m) ^ 2

Next i

d = d / (n - 1)

b = Sqr(d)

List1.AddItem ("диссперсия = " + Str(d))

List1.AddItem ("сререднекв откл = " + Str(b))

'построение интегральной функции

Picture1.Scale (-2, 11)-(11, -2)

Picture1.Line (0, -2)-(0, 11)

Picture1.Line (-2, 0)-(11, 0)

Picture1.PSet (-1, 11)

Picture1.Print ("f(x)")

Picture1.PSet (10.5, -0.3)

Picture1.Print ("x")

Picture1.PSet (-0.7, 4)

Picture1.Print ("0.4")

Picture1.PSet (-0.7, 7)

Picture1.Print ("0.7")

Picture1.PSet (-0.7, 10)

Picture1.Print ("1")

Picture1.PSet (2, -0.3)

Picture1.Print ("2")

Picture1.PSet (5, -0.3)

Picture1.Print ("5")

For i = 0 To 11 Step 0.001

If i < 2 Then

l = 4

Else

If i < 5 Then

l = (0.1 * i + 0.5) * 10

Else

l = 10

End If

End If

Picture1.PSet (i, l)

Next i

Picture1.Line (2, 4)-(2, 7)

'построение обратной функции

Picture2.Scale (-2, 11)-(11, -2)

Picture2.Line (0, -2)-(0, 11)

Picture2.Line (-2, 0)-(11, 0)

Picture2.PSet (-1, 11)

Picture2.Print ("x")

Picture2.PSet (10.5, -0.3)

Picture2.Print ("f(x)")

Picture2.PSet (-0.7, 2)

Picture2.Print ("2")

Picture2.PSet (-0.7, 5)

Picture2.Print ("5")

Picture2.PSet (4, -0.3)

Picture2.Print ("0.4")

Picture2.PSet (7, -0.3)

Picture2.Print ("0.7")

Picture2.PSet (10, -0.3)

Picture2.Print ("1")

For i = 4 To 10 Step 0.001

If i < 7 Then

l = 2

Else

l = i - 5

End If

Picture2.PSet (i, l), vbRed

Next i

Picture2.Line (4, 0)-(4, 2), vbRed

Picture2.Line (10, 5)-(10, 11), vbRed

End Sub

РЕКЛАМА

рефераты НОВОСТИ рефераты
Изменения
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер


рефераты СЧЕТЧИК рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты © 2010 рефераты