|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Системный блок компьютераСистемный блок компьютераСистемный блок компьютера Материнская плата · Материнская плата -- основная плата персонального компьютера. На ней разме-1 щаются: · процессор -- основная микросхема, выполняющая большинство математических и логических операций; · микропроцессорный комплект (чипсет) -- набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы; · шины -- наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера; · оперативная память (оперативное запоминающее устройство, ОЗУ) -- набор микросхем, предназначенных для временного хранения данных, когда компьютер включен; · ПЗУ (постоянное запоминающее устройство) -- микросхема, предназначенная для длительного хранения данных, в том числе и когда компьютер выключен; · разъемы для подключения дополнительных устройств (слоты). Устройства, входящие в состав материнской платы, рассмотрим отдельно. Жесткий диск Жесткий диск -- основное устройство для долговременного хранения больших объемов данных и программ. На самом деле это не один диск, а группа соосных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Таким образом, этот «диск» имеет не две поверхности. Над каждой поверхностью располагается головка, предназначенная для чтения-записи данных. При высоких скоростях вращения дисков (90-250 об/с) в зазоре между головкой и поверхностью образуется аэродинамическая подушка, и головка парит над магнитной поверхностью на высоте, составляющей несколько тысячных долей миллиметра. При изменении силы тока, протекающего через головку, происходит изменение напряженности динамического магнитного поля в зазоре, что вызывает изменения в стационарном магнитном поле ферромагнитных частиц, образующих покрытие диска. Так осуществляется запись данных на магнитный диск. Операция считывания происходит в обратном порядке. Намагниченные частицы покрытия, проносящиеся на высокой скорости вблизи головки, наводят в ней ЭДС самоиндукции. Электромагнитные сигналы, возникающие при этом, усиливаются и передаются на обработку. Управление работой жесткого диска выполняет специальное аппаратно-логическое устройство -- контроллер жесткого диска. В прошлом оно представляло собой отдельную дочернюю плату, которую подключали к одному из свободных слотов материнской платы. В настоящее время функции контроллеров дисков частично интегрированы в сам жесткий диск, а частично выполняются микросхемами, входящими в микропроцессорный комплект (чипсет). Дисковод гибких дисков Информация на жестком диске может храниться годами, однако иногда требуется ее перенос с одного компьютера на другой. Несмотря на свое название, жесткий диск является весьма хрупким прибором, чувствительным к перегрузкам, ударам и толчкам. Теоретически, переносить информацию с одного рабочего места на другое путем переноса жесткого диска возможно, и в некоторых случаях так и поступают, но все-таки этот прием считается нетехнологичным, поскольку требует особой аккуратности и определенной квалификации. Для оперативного переноса небольших объемов информации используют так называемые гибкие магнитные диски (дискеты), которые вставляют в специальный накопитель -- дисковод. Приемное отверстие накопителя находится на лицевой панели системного блока. Правильное направление подачи гибкого диска отмечено стрелкой на его пластиковом кожухе. Основными параметрами гибких дисков являются: технологический размер (измеряется в дюймах), плотность записи (измеряется в кратных единицах) и полная емкость. Первый компьютер IBM PC (родоначальник платформы) был выпущен в 1981 году. К нему можно было подключить внешний накопитель, использующий односторонние гибкие диски диаметром 5,25 дюйма. Емкость диска составляла 160 Кбайт. В следующем году появились аналогичные двусторонние диски емкостью 320 Кбайт. Начиная с 1984 года выпускались гибкие диски 5,25 дюйма высокой плотности (1,2 Мбайт). В наши дни диски размером 5,25 дюйма не используются, так что производство и применение соответствующих дисководов практически прекратилось с середины 90-х годов. Гибкие диски размером 3,5 дюйма выпускают с 1980 года. Односторонний диск обычной плотности имел емкость 180 Кбайт, двусторонний -- 360 Кбайт, а двусторонний двойной плотности -- 720 Кбайт. Ныне стандартными считают диски размером 3,5 дюйма высокой плотности. Они имеют емкость 1440 Кбайт (1,4 Мбайт) и маркируются буквами HD (high density -- высокая плотность). Дисковод компакт-дисков CD-ROM В период 1994-1995 годов в базовую конфигурацию персональных компьютеров перестали включать дисководы гибких дисков диаметром 5,25 дюйма, но вместо них стандартной стала считаться установка дисковода CD-ROM, имеющего такие же внешние размеры. Аббревиатура CD-ROM (Compact Disc Read-Only Memory) переводится на русский язык как постоянное запоминающее устройство на основе компакт-диска. Принцип действия этого устройства состоит в считывании числовых данных с помощью лазерного луча, отражающегося от поверхности диска. Цифровая запись на компакт-диске отличается от записи на магнитных дисках очень высокой плотностью, и стандартный компакт-диск может хранить примерно 650 Мбайт данных. Большие объемы данных характерны для мультимедийной информации (графика, музыка, видео), поэтому дисководы CD-ROM относят к аппаратным средствам мультимедиа. Программные продукты, распространяемые на компакт-дисках, называют мультимедийными изданиями. Сегодня мультимедийные издания завоевывают все более прочное место среди других традиционных видов изданий. Так, например, существуют книги, альбомы, энциклопедии и даже периодические издания (электронные журналы), выпускаемые на CD-ROM. Основным недостатком стандартных дисководов CD-ROM является невозможность записи данных, но параллельно с ними сегодня существуют и устройства записи компакт-дисков -- дисководы CD-RW. Для записи используются специальные заготовки. Некоторые из них допускают только однократную запись (после записи диск превращается в обычный компакт-диск CD-ROM, доступный только для чтения), другие позволяют стереть ранее записанную информацию и выполнить запись заново. Основным параметром дисководов CD-ROM является скорость чтения данных. Она измеряется в кратных долях. За единицу измерения принята скорость чтения музыкальных компакт-дисков, составляющая в пересчете на данные 150 Кбайт/с. Видеокарта (видеоадаптер) Совместно с монитором видеокарта образует видеоподсистему персонального компьютера. Видеокарта не всегда была компонентом ПК. На заре развития персональной вычислительной техники в общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные об изображении. Специальный контроллер экрана считывал данные о яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора. С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана (количества точек по вертикали и горизонтали) области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения. Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший название видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой. Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти. За время существования персональных компьютеров сменилось несколько стандартов видеоадаптеров: MDA (монохромный)] CGA (4 цвета)', EGA (16 цветов); VGA (256 цветов). В настоящее время применяются видеоадаптеры SVGA, обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений (640x480, 800x600,1024x768, 1152x864; 1280x1024 точек и далее). Разрешение экрана является одним из важнейших параметров видеоподсистемы. Чем оно выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки и, соответственно, тем меньше видимый размер элементов изображения. Видеоподсистема любого компьютера состоит из двух частей - видеоадаптера, вставляемого в разъем расширения на системной плате и дисплея, подключаемого к видеоадаптеру. Видеоадаптер может быть оформлен в виде отдельной платы, вставляемой в слот расширения компьютера, или может быть расположен непосредственно на системной плате компьютера. Видеоадаптер включает в себя видеопамять, в которой хранится изображение, отображаемое в данный момент на экране дисплея, постоянное запоминающее устройство, в котором записаны наборы шрифтов, отображаемые видеоадаптером в текстовых и графических режимах, а также функции BIOS для работы с видеоадаптером. Кроме того, видеоадаптер содержит сложное управляющее устройство, обеспечивающее обмен данными с компьютером, формирование изображения и некоторые другие действия. Видеоадаптеры могут работать в различных текстовых и графических режимах, различающихся разрешением, количеством отображаемых цветов и некоторыми другими характеристиками. Сам видеоадаптер не отображает данные. Для этого к видеоадаптеру необходимо подключить дисплей. Изображение, создаваемое компьютером, формируется видеоадаптером и передается на дисплей для предоставления ее конечному пользователю. Видеоадаптер предназначен для хранения видеоинформации и ее отображения на экране монитора. Он непосредственно управляет монитором, а также процессом вывода информации на экран с помощью изменения сигналов строчной и кадровой развертки ЭЛТ монитора, яркости элементов изображения и параметров смешения цветов. Основными узлами современного видеоадаптера являются собственно видеоконтроллер (как правило, заказная БИС -- ASIC), видео BIOS, видеопамять, специальный цифроаналоговый преобразователь RAMDAC (Random Access Memory Digital to Analog Converter), кварцевый генератор (один или несколько) и микросхемы интерфейса с системной шиной (ISA, VLB, PCI, AGP или другой). Важным элементом видеоподсистемы является собственная память. Для этой цели используется память видеоадаптера, которая часто также называется видеопамятью, или фрейм-буфером, или же часть оперативной памяти ПК (в архитектуре с разделяемой памятью UMA). Все современные видеоподсистемы могут работать в одном из двух основных видеорежимов: текстовом или графическом. В текстовом режиме экран монитора разбивается на отдельные символьные позиции, в каждой из которых одновременно может выводиться только один символ. Для преобразования кодов символов, хранимых в видеопамяти адаптера, в точечные изображения на экране служит так называемый знакогенератор, который обычно представляет собой ПЗУ, где хранятся изображения символов, «разложенные» по строкам. При получении кода символа знакогенератор формирует на своем выходе соответствующий двоичный код, который затем преобразуется в видеосигнал. Текстовый режим в современных операционных системах используется только на этапе начальной загрузки. Видеопамять Тут два вопроса: сколько, и какого типа? Что касается объема, то это - не менее двух мегабайт. Причем объем требуемой памяти напрямую связан с разрешением, с которым планируется работать, и глубиной представления цвета. Разрешение. Количество пикселей, представленное битами в видеопамяти, или адресуемое разрешение. Видеопамять может организовываться соотношением пикселов (битов) по оси x (пикселы на строке) к числу пикселов по оси y (столбцы) и к размеру отводимой памяти на представление глубины цвета. Стандартная видеопамять VGA 640 пикселов на 480 пикселов и, обычно, с глубиной представления цвета 8 бит. Чем выше разрешение, тем более детально изображение, и тем больше нужно хранить о нем информации. Но не вся хранимая информация может быть отображена на дисплее. Пиксель. Комбинированный термин, обозначающий элемент изображения, который является наименьшим элементом экрана монитора. Другое название - pel. Изображение на экране состоит из сотен тысяч пикселей, объединенных для формирования изображения. Пиксель является минимальным сегментом растровой строки, которая дискретно управляется системой, образующей изображение. С другой стороны, это координата, используемая для определения горизонтальной пространственной позиции пикселя в пределах изображения. Пиксели на мониторе - это светящиеся точки яркого фосфора, являющиеся минимальным элементом цифрового изображения. Размер пикселя не может быть меньше точки, которую монитор может образовать. На цветном мониторе точки состоят из групп триад. Триады формируются тремя различными фосфорами: красным, зеленым и синим. Фосфоры располагаются вдоль сторон друг друга. Пиксели могут отличаться размерами и формой, в зависимости от монитора и графического режима. Количество точек на экране определяются физическим соотношением ширины к высоте трубки. И вот почему:
Что касается типа видеопамяти, то рекомендуется использовать видеоадаптеры с SGRAM, VRAM, WRAM или MDRAM.. Немного технических подробностей. Прежде чем стать изображением на мониторе, двоичные цифровые данные обрабатываются центральным процессором, затем через шину данных направляются в видеоадаптер, где они обрабатываются и преобразуются в аналоговые данные и уже после этого направляются в монитор и формируют изображение. Сначала данные в цифровом виде из шины попадают в видеопроцессор, где они начинают обрабатываться. После этого обработанные цифровые данные направляются в видеопамять, где создается образ изображения, которое должно быть выведено на дисплее. Затем, все еще в цифровом формате, данные, образующие образ, передаются в RAMDAC, где они конвертируются в аналоговый вид, после чего передаются в монитор, на котором выводится требуемое изображение. Таким образом, почти на всем пути следования цифровых данных над ними производятся различные операции преобразования, сжатия и хранения. Оптимизируя эти операции, можно добиться повышения производительности всей видеоподсистемы. Лишь последний отрезок пути, от RAMDAC до монитора, когда данные имеют аналоговый вид, нельзя оптимизировать. Рассмотрим подробнее этапы следования данных от центрального процессора системы до монитора. 1. Скорость обмен данными между CPU и графическим процессором напрямую зависит от частоты, на которой работает шина, через которую передаются данные. Рабочая частота шины зависит от чипсета материнской платы. Для видеоадаптеров оптимальными по скорости являются шина PCI и AGP. Чем выше рабочая частота шины, тем быстрее данные от центрального процессора системы дойдут до графического процессора видеоадаптера. 2. Ключевой момент, влияющий на производительность видеоподсистемы, вне зависимости от специфических функций различных графических процессоров - это передача цифровых данных, обработанных графическим процессором, в видеопамять, а оттуда в RAMDAC. Самое узкое место любой видеокарты - это видеопамять, которая непрерывно обслуживает два главных устройства видеоадаптера: графический процессор и RAMDAC, которые вечно перегружены работой. В любой момент, когда на экране монитора происходят изменения (иногда они происходят в непрерывном режиме, например, движение указателя мыши, мигание курсора в редакторе и т.д.), графический процессор обращается к видеопамяти. В то же время, RAMDAC должен непрерывно считывать данные из видеопамяти, чтобы изображение не пропадало с экрана монитора. Поэтому, чтобы увеличить производительность видеопамяти, производители применяют различные технические решения. Например, используют различные типы памяти с улучшенными свойствами и продвинутыми возможностями, например, VRAM, WRAM, MDRAM, SGRAM, или увеличивают ширину шины данных, по которой графический процессор или RAMDAC обмениваются информацией с видеопамятью, используя 32-разрядную, 64-разрядную или 128-разрядную видеошину. Один из вариантов - использовать двухпортовую видеопамять. Т.е. графический процессор осуществляет чтение из видеопамяти или запись в нее через один порт, а RAMDAC осуществляет чтение данных из видеопамяти, используя второй независимый порт. В результате графическому процессору больше не надо ожидать, пока RAMDAC завершит свои операции с видеопамятью, и наоборот, RAMDAC больше не требуется ожидать, пока графический процессор не завершит свою работу с видеопамятью. Другим методом для увеличения производительности является увеличение разрядности шины, через которую графический процессор и RAMDAC обмениваются данными с видеопамятью. Но самым распространенным на сегодняшний день методом оптимизации работы видеоадаптеров является применение повышенной тактовой частоты, на которой работает графический процессор, видеопамять и RAMDAC, что позволяет увеличить скорость обмена информацией между компонентами платы. RAMDAC принципы работы и параметры RAMDAC имеет два режима работы. В первом режиме чипсет оперирует данными цветовой гаммы или палитры (palletized data). В этом режиме 8 битные данные конвертируются в RGB цвета. Каждому из 256 возможных значений цвета соответствует положение в цветовой палитре, которая размещается в DAC (цифро-аналоговый преобразователь). Цветовая палитра формируется и хранится в RAM (память с произвольной выборкой) - отсюда и название RAMDAC - и может быть загружена с любой комбинацией цветов. Каждый раз, когда новый пиксел передается в DAC для отображения на экране, значение передаваемых данных используется в качестве указателя на положение в палитре, информация из палитры, используется в качестве значения цвета для DAC. Палитра, хранящаяся в RAM, имеет 256 позиций, каждая из которых хранит 24 бита данных о цвете, по 8 бит для каждого из трех основных составляющих цветов Red, Green и Blue. Емкость RAM соответстует значению 256 х 24 = 6144 бит или 768 байт. Для RAM используется стандартная память, изготовленная по технологии DRAM и интегрированная вместе с графическим контроллером и DAC в одну микросхему, иначе говоря - в один силикон (кремний). Кстати, технология включения RAM для DAC в графический чипсет не имеет никакого отношения к так называемой Embedded RAM (Встраиваемая память). Последняя используется в качестве локальной памяти (Local Memory), так же называемой буфером кадра. Во втором режиме RAMDAC оперирует цветовыми данными. В этом режиме (при 16, 24 или 32 бит представлении цвета) данными является RGB цвет. Например, при 16 битном представлении цвета, 5 бит определяют красный (Red), 6 бит зеленый (Green) и 5 бит синий (Blue) цвета. Для зеленого цвета используется больше бит, так как человечиский глаз более чувствителен к зеленому. При 24 или 32 бит представлении цвета, для каждого из цветов используется по 8 бит данных. В этом режиме данные, определяющие цвет, передаются непосредственно в DAC без использования RAM, т.е. не используются загружаемые палитры и данные передаются напрямую из видеопамяти. Так как RAM не задействована, то нет и ограничения в 205 MHz для частоты, на которой работает DAC. Единственным ограничением является максимально возможная скорость работы DAC. Выбор режима работы RAMDAC происходит так: операционная система Windows95/98/NT или приложение сообщает о требуемом режиме драйверу видеоадаптера, который и переводит RAMDAC в один или другой режим работы. Утилита управления режимами монитора (Display Control Panel) в Windows предоставляет возможность выбора между 8, 16 или 24/32 бит представлением цвета. Это и есть способ, с помощью которого Windows выбирает режим работы RAMDAC. Приложение, которое запускается на полный экран может устанавливать любой, требуемый ему режим, главное, чтобы этот режим поддерживался видеоадаптером. Операционная система или драйвер делают запрос, чтобы определить разрешение, глубину цвета и частоту обновления экрана. Драйвер может либо реализовать полученный ответ, либо вернуть сообщение, о том, что запрошенный режим не поддерживается или невозможен. В этом случае операционная система или приложение должны попробовать запросить установки другого видеорежима. Выбор режима работы RAMDAC никак не связан с типом используемой видеопамяти. Выбор режима, в которм работает RAMDAC, зависит от количества возможных цветов. DAC имеет разрядность 8*8*8 бит, т.е. по 8 бит на каждый RGB цвет, что соответствует способности отображать 16777216 (16М) цветов. При 8 битном представлении цвета, для палитры может использоваться 256 из 16 миллионов возможных цветов. При использовании данных цветовой гаммы (палитры), активными являются только 256 цветов, которые могут отображаться на экране в любой произвольно выбранный момент времени. Впрочем, палитра может быть изменена приложением в любой момент. При 8 битной глубине представления цвета, за загрузку палитры отвечает каждое приложение. При 16 битном цвете, имеется фиксированный набор цветов и для отображения могут использоваться любые цвета из 65536 (64К) доступных. При 24 или 32 битном цвете, DAC может отображать любой из 16 миллионов (16М) возможных цветов. Каждый пользователь может заметить, что при 8 битном цвете любое графическое изображение смотрится не так хорошо, как при 16 битном представлении цвета. Однако, большинство пользователей не могут заметить разницы при просмотре хорошо сделаного графического изображения в режиме 16 битного и 32 битного представления цвета. Фраза "хорошо сделанное графическое изображение" означает растрирование (dithering - дизеринг) -- процесс смешивания двух соседних цветов, для получения третьего с одновременным обеспечением плавных переходов между элементами изображения. В результате использования технологии растрирования получаются изображения, которые смотрятся практически одинакова в режимах с разной глубиной представления цвета. Для 16 битного представления цвета требуется в два раза больше памяти, чем для 8 битного, а для 32 битного представления цвета требуется в два раза больше памяти, чем для 16 битного. В связи с тем, что графические адаптеры имеют ограниченные объемы памяти, экономия этого ресурса становится одной из приоритетных задач. Ко всему прочему, отображение 32 битных данных зачастую происходит дольше, чем отображение 16 битных данных. А это уже относится к проблеме производительности, о чем тоже не стоит забывать. Именно поэтому обычному поьзователю стоит использовать 16 битное представление цвета в Windows95/98/NT. Пользователь или приложение выбирают тот режим представления цвета, который для них наиболее удобен. Текстовый процессор, электронная таблица и 2D игры могут прекрасно работать в режиме 8 битного представления цвета. Видеофильмы, 3D игры и 3D приложения обычно используют 16 битный режим представления цвета, в качестве компромисса между качеством изображения и производительностью. При использовании программ для просмотра высококачественных фотографий, их редактирования, а так же приложений для создания графики лучше всего использовать 24/32 битное представление цвета. Как же узнать, в каком режиме работает RAMDAC? Если Вы используете Windows, то у Вас есть возможность выбрать глубину представления цвета между режимами 8, 16 или 24/32 бит. В 8 битном режиме используется палитра, т.е. RAMDAC работает со скоростью 205 MHz, во всех других режимах, с другой глубиной представления цвета, палитра не используется и RAMDAC работает со скоростью 220 MHz. Если запускается на выполнение приложение, работающее в полноэкранном режиме (например, в таком режиме работают большинство игр), то тогда само приложение определяет, в каком режиме будет работать RAMDAC. Иногда приложение выбрав режим работы сообщает эту информацию пользователю. Но в большинстве случаев такого не происходит. Пользователь может узнать, в каком режиме работает RAMDAC, проделав следующие действия: Найдите поверхность, в которой есть плавный переход от одного цвета к другому (как, например в небе у вас над головой). Если переход от одного цвета к другому выглядит так, будто состоит из перемежающихся точек, сильно отличающихся по цвету, значит ваше приложение работает в 8 битном режиме представления цвета. В противном случае, т.е. если переход от одного цвета к другому действительно плавный, ваше приложение работает с другой глубиной представления цвета. При этом, не лишне еще раз напомнить, что средний пользователь не может с уверенностью опредилить, с какой глубиной представления цвета он имеет дело, с 16 или 24/32 бит. Удостовериться, что заявленные значения скорости работы RAMDAC правда - достаточно просто. Если известно, в каком разрешении вы работаете, например 1024х768, и с какой частотой происходит обновление изображения (refresh rate), например 75 Hz, значит можно узнать какова скорость работы DAC. Скорости в 220 MHz вполне достаточно для отображения в режимах 1280х1024 при 85 Hz и 1600х1200 при 75 Hz. Для режима 1600х1200 при 85 Hz требуется скорость в 250 MHz. Известно, что по Европейским стандартам во всех разрешениях должна поддерживаться частота обновления экрана в 85 Hz, однако лишь немногие модели современных мониторов могут работать в режиме 1600х1200 при 85 Hz. Напомним известные факты: если частота обновления экрана слишком низкая, то пользователю будет заметно мерцание изображения, в следствии чего можно испортить зрение. Частота обновления экрана в 75 Hz уже достаточно быстрая, чтобы глаз человека мог заметить мерцание. Поэтому, гораздо более разумно сосредоточить внимание на значениях частоты обновления изображения, а не на скорости работы DAC, тем более, что эти значения взаимосвязаны. Графические акселераторы (ускорители) -- специализированные графические сопроцессоры, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета. Видеоакселераторы Изображение, которое мы видим на экране монитора, представляет собой выводимое специальным цифроаналоговым преобразователем RAMDAC (Random Access Memory Digital to Analog Converter) и устройством развертки содержимое видеопамяти. Это содержимое может изменяться как центральным процессором, так и графическим процессором видеокарты -- ускорителем двухмерной графики (синонимы: 2D-ускоритель, 2D-акселератор, Windows-акселератор или GDI-акселератор). Современные оконные интерфейсы требуют быстрой (за десятые доли секунды) перерисовки содержимого экрана при открытии/закрытии окон, их перемещении и т. п., иначе пользователь будет чувствовать недостаточно быструю реакцию системы на его действия. Для этого процессор должен был бы обрабатывать данные и передавать их по шине со скоростью, всего в 2-3 раза меньшей, чем скорость работы RAMDAC, а это десятки и даже сотни мегабайт в секунду, что практически нереально даже по современным меркам. В свое время для повышения быстродействия системы были разработаны локальные шины, а позднее -- 2D-ускорители, которые представляют собой специализированные графические процессоры, способные самостоятельно рисовать на экране курсор мыши, элементы окон и стандартные геометрические фигуры, предусмотренные GDI -- графической библиотекой Windows. 2D-ускорители обмениваются данными с видеопамятью по своей собственной шине, не загружая системную шину процессора. По системной шине 2D-ускоритель получает только GDI-инструкции от центрального процессора, при этом объем передаваемых данных и загрузка процессора в сотни раз меньше. Современные 2D-ускорители имеют 64- или 128-разрядную шину данных, причем для эффективного использования возможностей этой шины на видеокарте должно быть установлено 2 или 4 Мбайт видеопамяти соответственно, иначе данные будут передаваться по вдвое более узкой шине с соответствующей потерей в быстродействии. Можно сказать, что к настоящему моменту 2D-ускорители достигли совершенства. Все они работают столь быстро, что несмотря на то, что их производительность на специальных тестах может отличаться от модели к модели на 10-15%, пользователь, скорее всего, не заметит этого различия. Поэтому при выборе 2D-ускорителя следует обратить внимание на другие факторы: качество изображения, наличие дополнительных функций, качество и функциональность драйверов, поддерживаемые частоты кадровой развертки, совместимость с VESA (для любителей DOS-игр) и т. п. Микросхемы 2D-ускорителей в настоящее время производят ATI, Cirrus Logic, Chips&Technologies, Matrox, Number Nine, S3, Trident, Tseng Labs и другие компании. Под мультимедиа-акселераторами обычно понимают устройства, которые помимо ускорения обычных графических операций могут также выполнять ряд операций по обработке видеоданных от разных источников. Прежде всего, это функции по ускорению вывода видео в форматах AVI, Indeo, MPEG-1 и других. Проблема в том, что видеофильм в формате NTSC идет со скоростью 30 кадров в секунду, PAL и SECAM -- 25 кадр/с. Скорость смены кадров в цифровом видео перечисленных форматов также меньше или равна 30 кадр/с, однако разрешение изображения редко превышает 320 x 240 пикселов. При этих параметрах скорость поступления информации составляет порядка 6 Мбайт/с и процессор успевает выполнить ее декомпрессию и пересылку по шине в видеопамять. Однако такой размер изображения слишком мал для комфортного просмотра на экране, поэтому его обычно масштабируют на весь экран. В этом случае скорость потока данных возрастает до десятков и сотен мегабайт в секунду. Это обстоятельство привело к появлению видеоакселераторов, которые умеют самостоятельно масштабировать видео в форматах AVI и MPEG-1 на весь экран, а также выполнять сглаживание отмасштабированного изображения, чтобы оно не выглядело, как набор квадратиков. Подавляющее большинство современных 2D-ускорителей являются в то же время и видеоускорителями, а некоторые, например ATI Rage128, умеют воспроизводить и видео в формате MPEG-2 (т. е. с исходным разрешением 720 х 480). К мультимедиа-функциям также относят аппаратную цифровую компрессию и декомпрессию видео (что почти не встречается на массовых видеокартах), наличие композитного видеовыхода, вывод TV-сигнала на монитор, низкочастотный видеовход и высокочастотный TV-вход, модуль для работы с телетекстом и другие функции. 3D-акселераторы Когда в роли двигателя прогресса выступили компьютерные игры, 2D-ускорители (см. Видеоакселераторы) почти исчерпали свои возможности, и эволюция видеокарт пошла по пути наделения их все более мощными средствами ускорения трехмерной машинной графики. Видеоадаптеры, способные ускорять операции трехмерной графики, получили название 3D-ускорителей (синонимом является 3D-акселератор, а также часто встречаемое жаргонное «3Dfx» для обозначения всех 3D-ускорителей, а не только произведенных компанией 3Dfx Interactive). Вообще, 3D-ускорители существовали и раньше, но областью их применения было трехмерное моделирование и САПР, стоили они очень дорого (от 1 до 15 тыс. долларов) и были практически недоступны массовому пользователю. Какие же действия ускоряет 3D-акселератор? В компьютере трехмерные объекты представляются с помощью геометрических моделей, состоящих из сотен и тысяч элементарных геометрических фигур, обычно треугольников. Задаются также пространственное положение источников света, отражательные свойства материала поверхности объекта, степень его прозрачности и т. п. При этом некоторые объекты могут частично загораживать друг друга, между ними может переотражаться свет; пространство может быть не абсолютно прозрачным, а затянутым туманом или дымкой. Для большего реализма необходимо учесть и эффект перспективы. Чтобы поверхность смоделированного объекта не выглядела искусственной, на нее наносится текстура -- двухмерная картинка небольшого размера, передающая цвет и фактуру поверхности. Все перечисленные трехмерные объекты с учетом примененных к ним эффектов должны в конечном итоге быть преобразованы в плоское изображение. Эту операцию, называемую рендерингом, и выполняет 3D-ускоритель. Перечислим наиболее распространенные операции, которые 3D-ускоритель выполняет на аппаратном уровне: Удаление невидимых поверхностей. Обычно выполняется по методу Z-буфера, который заключается в том, что проекции всех точек трехмерной модели объекта на плоскость изображения сортируются в специальной памяти (Z-буфере) по расстоянию от плоскости изображения. В качестве цвета изображения в данной точке выбирается цвет той точки в Z-буфере, которая наиболее близка к плоскости изображения, а остальные точки считаются невидимыми (если не включен эффект прозрачности), так как они загорожены от нас самой первой точкой. Эта операция выполняется подавляющим большинством 3D-ускорителей. В большинстве современных ускорителей предусмотрены 16-разрядные Z-буферы, размещаемые в видеопамяти на плате. Закрашивание (Shading) придает треугольникам, составляющим объект, определенный цвет, зависящий от освещенности. Бывает равномерным (Flat Shading), когда каждый треугольник закрашивается равномерно, что вызывает эффект не гладкой поверхности, а многогранника; по Гуро (Gouraud Shading), когда интерполируются значения цвета вдоль каждой грани, что придает криволинейным поверхностям более гладкий вид без видимых ребер; по Фонгу (Phong Shading), когда интерполируются векторы нормали к поверхности, что позволяет добиться максимальной реалистичности, однако требует больших вычислительных затрат и в массовых 3D-ускорителях пока не используется. Большинство 3D-ускорителей умеет выполнять закрашивание по Гуро. Отсечение (Clipping) определяет часть объекта, видимую на экране, и обрезает все остальное, чтобы не выполнять лишних расчетов. Расчет освещения. Для выполнения этой процедуры часто применяют метод трассировки лучей (Ray Tracing), позволяющий учесть переотражения света между объектами и их прозрачность. Эту операцию с разным качеством умеют выполнять все 3D-ускорители. Наложение текстур (Texture Mapping), или наложение плоского растрового изображения на трехмерный объект с целью придания его поверхности большей реалистичности. Например, в результате такого наложения деревянная поверхность будет выглядеть именно как сделанная из дерева, а не из неизвестного однородного материала. Качественные текстуры обычно занимают много места. Для работы с ними применяют 3D-ускорители на шине AGP, которые поддерживают технологию сжатия текстур. Наиболее совершенные карты поддерживают мультитекстурирование -- одновременное наложение двух текстур. Фильтрация (Filtering) и сглаживание (Anti-aliasing). Под сглаживанием понимается уменьшение искажений текстурных изображений с помощью их интерполяции, особенно на границах, а под фильтрацией понимается способ уменьшения нежелательной «зернистости» при изменении масштаба текстуры при приближении к 3D-объекту или при удалении от него. Известна билинейная фильтрация (Bilinear Filtering), в которой цвет пиксела вычисляется путем линейной интерполяции цветов соседних пикселов, а также более качественная трилинейная фильтрация с использованием MIP-карт (Trilinear MIP Mapping). Под MIP-картами (от лат. Multum in Parvum -- «многое в одном») понимается набор текстур с разными масштабами, что позволяет в процессе трилинейной фильтрации выполнять усреднение между соседними пикселами и между соседними MIP-картами. Трилинейная фильтрация дает особенный эффект при наложении текстур на протяженный объект, удаляющийся от наблюдателя. Современные платы поддерживают трилинейную фильтрацию. Прозрачность, или альфа-канал изображения (Transparency, Alpha Blending) -- это информация о прозрачности объекта, позволяющая строить такие прозрачные и полупрозрачные объекты, как вода, стекло, огонь, туман и дымка. Наложение тумана (Fogging) часто выделяется в отдельную функцию и вычисляется отдельно. Смешение цветов, или дизеринг (Dithering) применяется при обработке двух- и трехмерных изображений с большим количеством цветов на устройстве с меньшим их количеством. Этот прием заключается в рисовании малым количеством цветов специального узора, создающего при удалении от него иллюзию использования большего количества цветов. Пример дизеринга -- применяемый в полиграфии способ передачи градаций серого цвета за счет нанесения мелких черных точек с различной пространственной частотой. В 3D-ускорителях дизеринг используется для передачи 24-битного цвета в 8- или 16-битных режимах. Для поддержки функций 3D-ускорителя в играх и других программах существует несколько интерфейсов прикладного программирования, или API (Application Program Interface), позволяющих приложению стандартным образом использовать возможности 3D-ускорителя. На сегодняшний день существует множество таких интерфейсов, среди которых наиболее известны Direct3D (Microsoft), OpenGL (Silicon Graphics), Glide (3Dfx), 3DR (Intel), Heidi (Autodesk), RenderGL (Intergraph). Интерфейс Direct3D компании Microsoft стал фактическим стандартом для большинства компьютерных игр; и большинство 3D-ускорителей укомплектованы Direct3D-драйверами. Однако стоит иметь в виду, что Direct3D поддерживается только в среде Windows 95/98, а уже в Windows NT большинство плат не поддерживает аппаратных функций ускорения. Разработанный компанией Silicon Graphics для своих графических станций Iris GL интерфейс прикладного программирования OpenGL стал общепринятым стандартом для программ трехмерного моделирования и САПР. Используемый в профессиональных 3D-ускорителях, он позволяет очень точно описывать параметры сцены. OpenGL в настоящее время является открытым стандартом, контролируемым ассоциацией OpenGL Architecture Review Board, в которую помимо Silicon Graphics входят Digital, IBM, Intel, Intergraph, Microsoft и др. Несмотря на это, существует множество диалектов OpenGL. По распространенности в области компьютерных игр OpenGL уступает Direct3D. Драйвер 3D-ускорителя может поддерживать OpenGL в двух режимах: усеченном MCD (Mini Client Driver) и полном ICD (Installable Client Driver). Драйвер MCD реализует только базовый набор операций, ICD-- высокооптимизированный драйвер, который обеспечивает максимальное быстродействие. К сожалению, многие производители 3D-ускорителей, заявив о своей полной поддержке OpenGL, не обеспечивают ее даже на уровне MCD-драйвера. Наличием стабильных ICD-драйверов могут похвастаться лишь немногие 3D-ускорители (в основном на базе чипсетов 3DPro, Glint, Permedia 2 и RivaTNT). Интерфейс Glide разработан компанией 3Dfx Interactive для производимых ею ускорителей Voodoo. Glide снискал широкое распространение среди производителей компьютерных игр, хотя, в отличие от OpenGL, Glide не является универсальным 3D API и поддерживает только возможности Voodoo. В настоящее время наиболее известны следующие 3D-ускорители: ATI 3D Rage Pro и 3D Rage 128; Intel i740; Number Nine Ticket to Ride IV; Mitsubishi 3DPro/2mp, Matrox G100 и G200; S3 Savage3D; Riva128 и RivaTNT; Rendition V2100 и V2200; 3Dlabs Permedia 2 и 3; 3Dfx Voodoo, Voodoo2 и Voodoo Banshee; NEC PowerVR PCX2. На базе этих чипсетов производятся собственно видеокарты, причем не только перечисленными компаниями, а и компаниями, не выпускающими собственные графические процесоры, например ASUSTek, Creative Labs или Diamond Multimedia. Современные 3D-видеокарты обладают и функциями ускорения двухмерной графики. Исключением являются ускорители на базе 3Dfx Voodoo и Voodoo2, которые подключаются к выходу обыкновенной видеокарты перед монитором специальным внешним соединительным кабелем. Такое решение ухудшает качество 2D-изображения, и к тому же невозможна работа в оконном режиме. В 3Dfx Voodoo Banshee от этой схемы отказались, и она представляет собой полноценный 2D/3D-ускоритель. Звуковая карта Звуковая карта явилась одним из наиболее поздних усовершенствований персонального компьютера. Она устанавливается в один из разъемов материнской платы в виде дочерней карты и выполняет вычислительные операции, связанные с обработкой звука, речи, музыки. Звук воспроизводится через внешние звуковые колонки, подключаемые к выходу звуковой карты. Специальный разъем позволяет отправить звуковой сигнал на внешний усилитель. Имеется также разъем для подключения микрофона, что позволяет записывать речь или музыку и сохранять их на жестком диске для последующей обработки и использования. Основным параметром звуковой карты является разрядность, определяющая количество битов, используемых при преобразовании сигналов из аналоговой в цифровую форму и наоборот. Чем выше разрядность, тем меньше погрешность, связанная с оцифровкой, тем выше качество звучания. Минимальным требованием сегодняшнего дня являются 16 разрядов, а наибольшее распространение имеют 32-разрядные и 64-разрядные устройства. В области воспроизведения звука наиболее сложно обстоит дело со стандартизацией. В отсутствие единых централизованных стандартов, стандартом де-факто стали устройства, совместимые с устройством SoundBlaster, торговая марка на которое принадлежит компании Creative Labs. В последнее время обработка звука рассматривается как относительно простая операция, которую, в связи с возросшей мощностью процессора, можно возложить и на него. В отсутствие повышенных требований к качеству звука можно использовать интегрированные звуковые системы, в которых функции обработки звука выполняются центральным процессором и микросхемами материнской платы. В этом случае колонки или иное устройство воспроизведения звука подключается к гнездам, установленным непосредственно на материнской плате. Системы, расположенные на материнской плате Оперативная память (RAM *-- Random Access Memory) -- это массив кристаллических ячеек, способных хранить данные. Существует много различных типов оперативной памяти, но с точки зрения физического принципа действия различают динамическую память (DRAM) и статическую память (SRAM). Ячейки динамической памяти (DRAM) можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках. Это наиболее распространенный и экономически доступный тип памяти. Недостатки этого типа связаны, во-первых, с тем, что как при заряде, так и при разряде конденсаторов неизбежны переходные процессы, то есть запись данных происходит сравнительно медленно. Второй важный недостаток связан с тем, что заряды ячеек имеют свойство рассеиваться в пространстве, причем весьма быстро. Если оперативную память постоянно не «подзаряжать», утрата данных происходит через несколько сотых долей секунды. Для борьбы с этим явлением в компьютере происходит постоянная регенерация (освежение, подзарядка) ячеек оперативной памяти. Регенерация осуществляется несколько десятков раз в секунду и вызывает непроизводительный расход ресурсов вычислительной системы. Ячейки статической памяти (SRAM) можно представить как электронные микроэлементы -- триггеры, состоящие из нескольких транзисторов. В триггере хранится не заряд, а состояние (включен/выключен), поэтому этот тип памяти обеспечивает более высокое быстродействие, хотя технологически он сложнее и, соответственно, дороже. Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспомогательной памяти (так называемой кэш-памяти), предназначенной для оптимизации работы процессора. Каждая ячейка памяти имеет свой адрес, который выражается числом. В большинстве современных процессоров предельный размер адреса обычно составляет 32 разряда, а это означает, что всего независимых адресов может быть 232. Одна адресуемая ячейка содержит восемь двоичных ячеек, в которых можно сохранить 8 бит, то есть один байт данных. Таким образом, в современных компьютерах возможна непосредственная адресация к полю памяти размером 232 байт = 4 Гбайт. Однако это отнюдь не означает, что именно столько оперативной памяти непременно должно быть в компьютере. Предельный размер поля оперативной памяти, установленной в компьютере, определяется микропроцессорным комплектом (чипсетом) материнской платы и обычно не может превосходить нескольких Гбайт. Минимальный объем памяти определяется требованиями операционной системы и для современных компьютеров составляет 128 Мбайт. Представление о том, сколько оперативной памяти должно быть в типовом компьютере, непрерывно меняется. В середине 80-х годов поле памяти размером 1 Мбайт казалось огромным, в начале 90-х годов достаточным считался объем 4 Мбайт, к середине 90-х годов он увеличился до 8 Мбайт, а затем и до 16 Мбайт. Сегодня типичным считается размер оперативной памяти в 256 Мбайт, но тенденция к росту сохраняется. Оперативная память в компьютере размещается на стандартных панельках, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Если к разъемам есть удобный доступ, то операцию можно выполнять своими руками. Если удобного доступа нет, может потребоваться неполная разборка узлов системного блока, и в таких случаях операцию поручают специалистам. Основными характеристиками модулей оперативной памяти являются объем памяти и скорость передачи данных. Сегодня наиболее распространены модули объемом 128-512 Мбайт. Скорость передачи данных определяет максимальную пропускную способность памяти (в Мбайт/с или Гбайт/с) в оптимальном режиме доступа. При этом учитывается время доступа к памяти, ширина шины и дополнительные возможности, такие как передача нескольких сигналов за один такт работы. Одинаковые по объему модули могут иметь разные скоростные характеристики. Иногда в качестве определяющей характеристики памяти используют время доступа. Оно измеряется в миллиардных долях секунды {наносекундах, не). Для современных модулей памяти это значение может составлять 5 не, а для особо быстрой памяти, используемой в основном в видеокартах, -- снижаться до 2-3 не. Процессор Процессор -- основная микросхема компьютера, в которой и производятся все вычисления. Конструктивно процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами. Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ. С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основных шин три: шина данных, адресная шина и командная шина. Адресная шина. У процессоров семейства Pentium (а именно они наиболее распространены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных проводников. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров. Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В современных персональных компьютерах шина данных, как правило, 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов. Шина команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укладываются в один байт, однако есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная, хотя существуют 64-разрядные процессоры и даже 128-разрядные. Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти, а также данные, находящиеся во внешних портах процессора. Часть данных он интерпретирует непосредственно как данные, часть данных -- как адресные данные, а часть -- как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относящиеся к одному семейству, имеют одинаковые или близкие системы команд. Процессоры, относящиеся к разным семействам, различаются по системе команд и невзаимозаменяемы. Процессоры с расширенной и сокращенной системой команд. Чем шире набор системных команд процессора, тем сложнее его архитектура, тем длиннее формальная запись команды (в байтах), тем выше средняя продолжительность исполнения одной команды, измеренная в тактах работы процессора. Так, например, система команд процессоров семейства Pentium в настоящее время насчитывает более тысячи различных команд. Такие процессоры называют процессорами с расширенной системой команд -- CISC-процессорами (CISC -- Complex Instruction Set Computing). В противоположность C/SC-процессорам в середине 80-х годов появились процессоры архитектуры RISC с сокращенной системой команд (RISC -- Reduced Instruction Set Computing). При такой архитектуре количество команд в системе намного меньше и каждая из них выполняется намного быстрее. Таким образом, программы, состоящие из простейших команд, выполняются этими процессорами много быстрее. Оборотная сторона сокращенного набора команд состоит в том, что сложные операции приходится эмулировать далеко не эффективной последовательностью простейших команд сокращенного набора. В результате конкуренции между двумя подходами к архитектуре процессоров сложилось следующее распределение их сфер применения: CISC-процессоры используют в универсальных вычислительных системах; RISC-процессоры используют в специализированных вычислительных системах или устройствах, ориентированных на выполнение единообразных операций. Персональные компьютеры платформы IBM PC ориентированы на использование CISC-процессоров. Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процессором. Процессоры, имеющие разные системы команд, как правило, несовместимы или ограниченно совместимы на программном уровне. Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86. Родоначальником этого семейства был 16-разрядный процессор Intel 8086, на базе которого собиралась первая модель компьютера IBM PC. Впоследствии выпускались процессоры Intel 80286, Intel 80386, Intel 80486, несколько моделей Intel Pentium] несколько моделей Intel Pentium MMX, модели Intel Pentium Pro, Intel Pentium II, Intel Celeron, IntelXeon, Intel Pentium III, Intel Pentium 4 и другие. Все эти модели, и не только они, а также многие модели процессоров компании AMD и некоторых других производителей относятся к семейству х86 обладают совместимостью по принципу «сверху вниз». Принцип совместимости «сверху вниз» -- это пример неполной совместимости когда каждый новый процессор «понимает» все команды своих предшественников но не наоборот. Это естественно, поскольку двадцать лет назад разработчики про цессоров не могли предусмотреть систему команд, нужную для современных про грамм. Благодаря такой совместимости на современном компьютере можно выпол нять любые программы, созданные в последние десятилетия для любого и предшествующих компьютеров, принадлежащего той же аппаратной платформе Основные параметры процессоров. Основными параметрами процессоров являются: рабочее напряжение,разрядность,рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти. В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник; в ручных механических часах их задает пружинный маятник; в электронных часах для этого есть колебательный контур, задающий такты строго определенйой частоты. В персональном компьютере тактовые импульсы задает одна из микросхем, входящая в микропроцессорный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше его производительность. Первые процессоры х86 могли работать с частотой не выше 4,77 МГц, а сего дня рабочие частоты некоторых процессоров уже превосходят 3 миллиарда тактов в секунду (3 ГГц). Микросхема ПЗУ и система BIOS В момент включения компьютера в его оперативной памяти нет ничего -- ни данных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки ячеек более сотых долей секунды, но процессору нужны команды, в том числе и в первый момент после включения. Поэтому сразу после включения на адресной шине процессора выставляется стартовый адрес. Это происходит аппаратно, без участия программ (всегда одинаково). Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по программам. Этот исходный адрес не может указывать на оперативную память, в которой пока ничего нет. Он указывает на другой тип памяти -- постоянное запоминающее устройство (ПЗУ). Микросхема ПЗУ способна длительное время хранить информацию, даже когда компьютер выключен. Программы, находящиеся в ПЗУ, называют «зашитыми» -- их записывают туда на этапе изготовления микросхемы. Шинные интерфейсы материнской платы Связь между всеми собственными и подключаемыми устройствами материнской платы выполняют ее шины и логические устройства, размещенные в микросхемах микропроцессорного комплекта (чипсета). От архитектуры этих элементов во многом зависит производительность компьютера. ISA. Историческим достижением компьютеров платформы IBM PC стало внедрение почти двадцать лет назад архитектуры, получившей статус промышленного стандарта ISA (Industry Standard Architecture). Она не только позволила связать все устройства системного блока между собой, но и обеспечила простое подключение новых устройств через стандартные разъемы (слоты). Пропускная способность шины, выполненной по такой архитектуре, составляет до 5,5 Мбайт/с, но, несмотря на низкую пропускную способность, эта шина еще может использоваться в некоторых компьютерах для подключения сравнительно «медленных» внешних устройств, например звуковых карт и модемов. EISA. Расширением стандарта ISA стал стандарт EISA (Extended ISA), отличающийся увеличенным разъемом и увеличенной производительностью (до 32 Мбайт/с). Как и ISA, в настоящее время данный стандарт считается устаревшим. После 2000 года выпуск материнских плат с разъемами ISA/EISA и устройств, подключаемых к ним, практически прекращен. VLB. Название интерфейса переводится как локальная шина стандарта VESA (VESA Local Bus). Понятие «локальной шины» впервые появилось в конце 80-х годов. Оно связано тем, что при внедрении процессоров третьего и четвертого поколений (Intel 80386 и Intel 80486) частоты основной шины (в качестве основной использовалась шина IS A/EISA) стало недостаточно для обмена между процессором и оперативной памятью. Локальная шина, имеющая повышенную частоту, связала между собой процессор и память в обход основной шины. Впоследствии в эту шину «врезали» интерфейс для подключения видеоадаптера, который тоже требует повышенной пропускной способности, -- так появился стандарт VLB, который позволил поднять тактовую частоту локальной шины до 50 МГц и обеспечил пиковую пропускную способность до 130 Мбайт/с. Основным недостатком интерфейса VLB стало то, что предельная частота локальной шины и, соответственно, ее пропускная способность зависят от числа устройств, подключенных к шине. Так, например, при частоте 50 МГц к шине может быть подключено только одно устройство (видеокарта). Для сравнения скажем, что при частоте 40 МГц возможно подключение двух, а при частоте 33 МГц -- трех устройств. Активное использование шины VLB продолжалось очень недолго, она была вскоре вытеснена шиной PCL PCI. Интерфейс PCI (Peripheral Component Interconnect -- стандарт подключения внешних компонентов) был введен в персональных компьютерах во времена процессора 80486 и первых версий Pentium. По своей сути это тоже интерфейс локальной шины, связывающей процессор с оперативной памятью, в которую врезаны разъемы для подключения внешних устройств. Для связи с основной шиной компьютера (ISA/EISA) используются специальные интерфейсные преобразователи -мосты PCI (PCI Bridge). В современных компьютерах функции моста PCI выполняют микросхемы микропроцессорного комплекта (чипсета). Данный интерфейс поддерживает частоту шины 33 МГц и обеспечивает пропускную способность 132 Мбайт/с. Последние версии интерфейса поддерживают частоту до 66 МГц и обеспечивают производительность 264 Мбайт/с для 32-разрядных данных и 528 Мбайт/с для 64-разрядных данных. Важным нововведением, реализованным этим стандартом, стала поддержка так называемого режима plug-and-play, впоследствии оформившегося в промышленный стандарт на самоустанавливающиеся устройства. Его суть состоит в том, что после физического подключения внешнего устройства к разъему шины PCI происходит обмен данными между устройством и материнской платой, в результате которого устройство автоматически получает номер используемого прерывания, адрес порта подключения и номер канала прямого доступа к памяти. Конфликты между устройствами за обладание одними и теми же ресурсами (номерами прерываний, адресами портов и каналами прямого доступа к памяти) вызывают массу проблем у пользователей при установке устройств, подключаемых к шине ISA. С появлением интерфейса PCI и с оформлением стандарта plug-and-play появилась возможность выполнять установку новых устройств с помощью автоматических программных средств -- эти функции во многом были возложены на операционную систему. FSB. Шина PC/, появившаяся в компьютерах на базе процессоров Intel Pentium как локальная шина, предназначенная для связи процессора с оперативной памятью, недолго оставалась в этом качестве. Сегодня она используется только как шина для подключения внешних устройств, а для связи процессора и памяти, начиная с процессора Intel Pentium Pro, используется специальная шина, получившая название Front Side Bus (FSB). Эта шина работает на частоте 100-200 МГц. Частота шины FSB является одним из основных потребительских параметров -- именно он и указывается в спецификации материнской платы. Современные типы памяти (DDR SDRAM, RDRAM) способны передавать несколько сигналов за один такт шины FSB, что повышает скорость обмена данными с оперативной памятью. AGP. Видеоадаптер -- устройство, требующее особенно высокой скорости передачи данных. Как при внедрении локальной шины VLB, так и при внедрении локальной шины PCI видеоадаптер всегда был первым устройством, «врезаемым» в новую шину. Когда параметры шины PCI перестали соответствовать требованиям видеоадаптеров, для них была разработана отдельная шина, получившая название A GP (Advanced Graphic Port -- усовершенствованный графический порт). Частота этой шины соответствует частоте шины PC/(33 МГц или 66 МГц), но она имеет много более высокую пропускную способность за счет передачи нескольких сигналов за один такт. Число сигналов, передаваемых за один такт, указывается в виде множителя, например A GP4x (в этом режиме скорость передачи достигает 1066 Мбайт/с). Последняя версия шины A GP имеет кратность 8х. PCMCIA (Personal Computer Memory Card International Association -- стандарт международной ассоциации производителей плат памяти для персональных компьютеров). Этот стандарт определяет интерфейс подключения плоских карт памяти небольших размеров и используется в портативных персональных компьютерах. USB (Universal Serial Bus -- универсальная последовательная магистраль). Этоодно из последних нововведений в архитектурах материнских плат. Этот стандарт определяет способ взаимодействия компьютера с периферийным оборудованием. Он позволяет подключать до 256 различных устройств, имеющих последовательный интерфейс. Устройства могут включаться цепочками (каждое следующее устройство подключается к предыдущему). Производительность шины USB относительно невелика, но вполне достаточна для таких устройств, как клавиатура, мышь, модем, джойстик, принтер и т. п. Удобство шины состоит в том, что она практически исключает конфликты между различным оборудованием, позволяет подключать и отключать устройства в «горячем режиме» (не выключая компьютер) и позволяет объединять несколько компьютеров в простейшую локальную сеть без применения специального оборудования и программного обеспечения. PCI-E (Peripheral Component Interconnect-Express- стандарт подключения внешних компонентов) - появился совершенно недавно, его основная роль заменить AGP как уже не справляющуюся с потоком видео данных. скорость передачи превышает 2100 Мбайт/с Заключение По итогам написания реферата можно сделать следующие выводы: системный блок это очень сложное устройство, являющееся главным элементом в архитектуре компьютера. Состоящий из большого количества отдельных и зачастую неотъемлемых элементов. В системном блоке проходят все вычислительные процессы. И к нему подключается абсолютно вся периферия компьютера. |
РЕКЛАМА
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |