|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Конструкция и расчет захватного устройстваКонструкция и расчет захватного устройстваКОНСТРУКЦИЯ И РАСЧЕТ ЗАХВАТНОГО УСТРОЙСТВА При конструировании наиболее распространенных захватных устройств (ЗУ) роботов необходимо учитывать конкретный тип детали или группы деталей, их форму, материал и условия ТП. Важные критерии при этом - необходима точность удержания детали и допустимое усилие на губках. Исходя из этого разработано большое количество разных ЗУ, которые различаются кинематической схемой и другими конструктивными параметрами. Усилие ЗУ должно соответствовать одному из значений ряда Ra10 в пределах 1 - 8000 Н: 1,0; 1,2; 1,6; 2,0; 2,5; 3,2; 4,0; 5,0; 6,3; 8,0; 10; 12; 16; 20; 25; 32; 40; 50; 63; 80; 100; 125; 160; 200; 250; 320; 400; 500; 630; 800; 1000; 1250; 1600; 2000; 2500; 3200; 4000; 5000; 6300; 8000. Расчет ЗУ включает нахождение сил, которые действуют в местах контакта заготовки и губок; определение усилий привода; проверку отсутствия повреждений поверхности объекта при схвате; расчет на прочность деталей устройства. Рисунок 1.1 - Расчетная схема захвата Усилие контактирования между деталью и губкой определяется по формуле (1.1) где i, j = 1,2; ij, Т.к. рассчитываемый захват симметричный, рассмотрим схему нагрузки одной из губок (см. рис. 1.2) Рисунок 1.2 - Схема нагрузки Рабочие губки 4 соединены тягами с зубчатыми секторами 3, которые находятся в зацеплении с рейкой 2, связанной с тягой 1 привода. При перемещении рейки 2 под действием усилия F электромагнита происходит поворот губок 4 в направлении центра на одинаковые углы и охват объекта манипулирования. Рассчитываем усилие контактирования между объектом и губкой. Пусть объект манипулирования будет в виде цилиндра массой m = 1кг. Реакция на одну губку захвата. (1.2) где g - ускорение свободного падения. Усиление контактирования между деталью и губкой определим по формуле (1.1). При получим: (1.3) Коэффициент трения для пары фторопласт - керамика 0,2. Усилие зажима на губке схвата равно: (1.4) Усилия, которые возникают в звеньях схвата при его работе, обозначены на рис. 1.2. Передаточный коэффициент механизма можно найти из условия: (1.5) Для определения этой зависимости составим условия равновесия системы относительно точки А (см. рис. 1.2). (1.6) т.е. сумма проекций всех сил на произвольно выбранные оси прямоугольных координат x,y и сумма моментов этих сил относительно точки А равняются нулю. В нашем случае условия равновесия системы относительно точки А записуется в виде: (1.7) Решив систему относительно G и F получим уравнение: , (1.8) преобразовав которое получим: или (1.9) Задавшись соотношением коэффициентом запаса и коэффициентом полезного действия механизма 0,9, найдем: (1.10) Что мы проигрываем в рычажном механизме, в силе то мы выигрываем в расстоянии. Ход губок 20 мм, ход штока электромагнита 10мм. Таким образом усилие электромагнита должно быть F=65H, а ход мм. Для расчета электромагнита берем короткоходовую магнитную систему постоянного тока (Рис. 1.3). Прямоходовые системы постоянного тока исполняются, как правило, в виде соленоидов. Поэтому такие системы часто называются соленоидными. В устарелых конструкциях соленоидные системы выполняются с открытым магнитопроводом. Для удобства выбора формы электромагнита вводится понятие о конструктивном факторе (к. ф.), представляющим собой отношение к.ф.=, (1.11) где - сила электромагнита, кг; - ход штока электромагнита, см. Выбор формулы определяется на основании следующих соображений: а) длина электромагнита пропорциональна требуемой величине хода - ; б) поперечное сечение стали электромагнита определяется величиной требуемой начальной силы . Каждой форме электромагнита соответствует определенная зона величины к.ф., при которых эта система выполняется с оптимальными данными по расходу материала. Короткоходовые системы - предусматриваются для получения больших значений сил при относительно малом ходе якоря. Такие системы принимаются при больших значениях конструктивного фактора. Исходными являются следующие данные: начальная сила на якоре ; рабочий ход мм; рабочее напряжение 24В. При проведении предварительного расчета не учитывают соленоидной силы, а принимают только силу притяжения якоря к стопу. Некоторыми значениями параметров, определяющих собой габариты системы, приходится задаваться: индукцией в якоре рабочего зазора, падением магнитного потенциала в стали и в нерабочих зазорах -, температурой превышения катушки, отношением длины намотки катушки к толщине ее. Правильный выбор указанных параметров определяет экономичность конструкции. Рисунок 1.3 Прямоходовая система с плоским стопом Отношение длины катушки к толщине намотки. Площадь сечения меди катушки принимают в зависимости от требуемого значения н.с. F. Значение может быть получено при разных отношениях . При изменении этого отношения получают разные условия в отношении расхода меди и стали: 1) увеличение приводит к уменьшению расхода меди, так как при этом уменьшается объем меди и увеличивается поверхность охлаждения катушки; 2) уменьшение приводит к увеличению расхода стали, так как при этом увеличивается длина магнитопровода. Минимальный вес всей конструкции достигается для различных видов электромагнитов и условий их работы разными путями. Практикой установлено следующее: при относительно большом ходе якоря и малом значении силы принимаются большие значения , при увеличении силы и уменьшении хода - это отношение уменьшается. Таким образом, и отношение можно фиксировать в функции значения к.ф. Значение колеблется в практически выполненных конструкциях в пределах 18. Значение выбирается в зависимости от конструктивного фактора и от режима работы катушки: чем больше значение к.ф., тем больше значение (см. Рис. 1.4) Рисунок 1.4 - Кривые зависимости для магнитных систем: масштаб I - сплошные линии; масштаб II - пунктирные. Короткоходовые системы предусматриваются для получения больших значений сил при относительно малом ходе якоря. Рассчитаем коэффициент формы к.ф. для взятой короткоходовой системы: (1.11) Уравнение силы электромагнита имеет вид: (1.12) Согласно графика рисунка 4 (масштаб 1) принимаем индуктивность в якоре (1.13) В рационально построенных конструкциях падение магнитного магнитного потенциала в стали магнитопровода составляется при начальном положении якоря 10-20% от величины н.с. катушки, а в нерабочих зазорах 5-10% Следовательно (1.14) Индукция в стали кожуха (1.15) Нерабочий зазор определяется толщиной латунной направляющей трубки (порядка 0,5 мм) и зазор между трубкой и якорем. Этот зазор принимают порядка 0,125 мм для случая, когда внутренняя поверхность трубки не обработана, и 0,05 мм для трубки с обработанной внутренней поверхностью. Отношение бывает в пределах 58 и выбирается также в зависимости от значения к.ф. (график рис. 1.4). Толщина намотки принимается из условия , тогда Принимаем =0,7 тогда сила притяжения электромагнита будет равна (1.12) В процессе выполнения расчета короткоходовой системы мы получили силу притяжения электромагнита равной 70 Н. Литература 1. Аш Ж., Андре П., Бофрон Ж. Датчики измерительных систем. В 2 т. Пер с фр. М.:Мир, 2002; 2. Бауман Э. Измерение сил электрическими методами: Пер. с нем. Мир, 1978. Энергоатомиздат, 2007; 3. Воротников С.А. Информационные устройства робототехнических систем. М.: Изд. МГТУ им. Н.Э.Баумана, 2005 4. Вульвет Дж. Датчики в цифровых системах: Пер. с англ. М.:Энергоиздат, 2001; 5. Гориневский Д.М. Формальский А.М., Шнейдер А.Ю. Управление манипуляционными системами на основе информации об усилиях. М.:Изд.фирма «Физико-математическая литература», 2004; 6. Погребной В.О., Рожанковский И.В., Юрченко Ю.П. Основы информационных процессов в роботизированном производстве; 7. Письменный Г.В., Солнцев В.И., Воротников С.А. Системы силомоментного очувствления роботов. М.: Машиностроение, 2000 8. Системы очувствления и адаптивные промышленные роботы. Под ред.Попова Е.П., Клюева В.В.; 9. Фу К., Гонсалес Р., Ли К. Робототехника. Пер. с англ.; Под ред В.Г. Градецкого. Мир, 2009. |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |