|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Механизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВМеханизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВМЕХАНИЗМЫ ИМПЛАНТАЦИИ В МЕТАЛЛЫ И СПЛАВЫ ИОНОВ АЗОТА С ЭНЕРГИЕЙ 1-10 кэВ ОГЛАВЛЕНИЕ
Рисунок 2.1 - Схема ионной имплантации газов в поверхностные слои металлов и сплавов в вакуумной камере. 1 - катод; 2 - промежуточный анод; 3 - анодная вставка; 4 - соленоид; 5 - камера, в которую подаётся газ; 6 - анод; 7 - экстрактор; 8 - фокусирующий электрод; 9 - подложка (легируемый материал); 10 - ионный пучок. Ионы газа вытягиваются и ускоряются под действием приложенного между экстрактором 7 и анодом 6 высокого напряжения (10 - 50 кВ). Ионный поток 10 фокусируется, проходя через фокусирующий электрод 8, и попадает на поверхность образца 9. При прохождении через отверстие в экстракторе ионы обладают энергией, достаточной для внедрения в поверхностные слои образца. 2.2 Механизмы взаимодействия имплантируемых ионов с мишеньюИз литературных источников [8, 21, 26, 36, 37, 48, 49], известно, что механические свойства обрабатываемой поверхности после имплантации ионов зависят, прежде всего, от концентрации внедренных ионов и образующихся в процессе имплантации радиационных дефектов. Для расчета пробегов и концентраций ионов при имплантации применяется теория Линхардта-Шарфа-Шиотта (ЛШШ), изложенная в работах [21, 22, 46 - 48]. Существенное влияние на распределение примеси по глубине поверхностного слоя изделия оказывает радиационно-стимулированная диффузия. На диффузионные процессы существенное влияние оказывает температура нагрева поверхностного слоя образца. Однако в случае ионов газов с энергией в диапазоне 1 - 10 кэВ ( Дж) нагрев будет незначительным для расчета окончательного распределения примеси можно пренебречь изменением температуры в зоне воздействия, а значит и её влиянием на диффузионные процессы. На концентрацию примеси (а значит и на остаточные концентрационные напряжения) влияет распыление поверхности образца при имплантации. Но для ионов газов низких энергий этот процесс можно не учитывать [3].В настоящее время не существует теории, достаточно полно объясняющей модификацию поверхностных свойств материалов при ионной имплантации. При взаимодействии бомбардирующих ионов с твердым телом происходит ряд процессов, обуславливающих модификацию свойств материалов. Такими процессами являются внедрение ионов, которое сопровождается образованием радиационных дефектов и их последующая диффузия. Физические модели и методики расчетов характеристик указанных процессов приведены в работах [2, 3, 8, 13, 15, 21, 22, 28, 36, 48, 49]. Однако, в настоящее время не существует модели модификации поверхностного слоя реального материала, которая достаточно полно учитывала бы все вышеназванные механизмы, происходящие при ионной имплантации [3].Рисунок 2.2 - Схема процессов, происходящих при ионной имплантации За основу при описании модификации поверхностного слоя реального материала возьмем схему процессов, происходящих при ионной имплантации, приведенную на рисунке 2.2. Она наиболее полно учитывает процессы взаимодействия ионов с веществом (рисунок 2.2): внедрение ионов, которое сопровождается образованием радиационных дефектов, дефектообразованием, нагревом поверхности материала и их последующая диффузия. На схеме отражены входные и выходные характеристики данных процессов: полная доза имплантации Ф, распределение примеси по глубине Ci(z), температурное поле Q(z,t), распределение элементарных радиационных дефектов Cv(z), распределение примеси Ci(z,t) и дефектов Cv(z,t), обусловленное радиационно-стимулированной диффузией и поле остаточных концентрационных напряжений (z). В разрабатываемой модели не отражен эффект дальнодействия (формирование развитой дислокационной структуры на глубинах, значительно превышающих глубину проникновения примеси при имплантации), обнаруженный рядом автором [2, 21, 44]. Несомненно, что этот эффект оказывает существенное влияние на свойства обработанного материала. Существующие гипотезы [21, 45, 53, 55] не позволяют количественно оценить этот эффект. Исследователи предполагают, что плотность образующейся в результате эффекта дальнодействия дислокационной структуры определяется как характеристиками ионного потока, так и элементным составом материала подложки [3]. Важной задачей является оценка свойств обработанного материала в зависимости от первоначальной концентрации примеси и образованных в процессе имплантации радиационных дефектов. Как показано в [3, 15, 49, 52, 54] остаточные концентрационные напряжения определяют свойства материала после имплантации. Анализ существующей литературы показал, что для прогнозирования структуры и свойств поверхностного слоя образцов после имплантации при известных параметрах ионного потока (управляемых за счет изменения тока на катоде, ускоряющего напряжения между анодом и экстрактором (рисунок 2.1), давления газа в камере и др.), необходимо знание параметров: дозы имплантации; пробегов ионов при известном ускоряющем напряжении; распределения примеси в материале после имплантации; полей остаточных концентрационных напряжений. Для их нахождения необходимо решить задачи выбора и усовершенствования методик расчета соответствующих параметров. В связи с этим целью дипломной работы является разработка комплекса моделей, позволяющих на основе данных о технологических параметрах имплантации составить прогноз о свойствах материала подложки после имплантации: 1. Модель для расчета пробегов ионов азота в металлах и сплавах под действием энергии имплантации; 2. Модель распределения ионов азота в поверхностном слое материала подложки после имплантации; 3. Модель распределения дефектов в поверхностном слое материала подложки после имплантации; 4. Модель расчета остаточных концентрационных напряжений в поверхностном слое материала подложки после имплантации. 2.3. Модель для расчета пробегов ионов в материале подложкиДля металлов и сплавов распределение пробегов по глубине оказывается приблизительно гауссовым [3]. Имеются трудности при теоретическом описании в случае больших интегральных доз облучения, когда на форму профиля примеси по глубине существенно сказывается распыление поверхности мишени, а также рассеяние ионов на атомах внедренной примеси [3].Наиболее точные результаты расчета энергетических потерь получаются при использовании теории ЛШШ, в основе которой лежит утверждение о том, что основными механизмами торможения частиц в обрабатываемом веществе являются неупругие соударения с электронами (электронное торможение) и упругие соударения с ядрами (ядерное торможение).В работе Линдхарда и др. [46, 47, 50, 51] получены уравнения, описывающие связь между энергией и пробегами ионов в аморфных мишенях. Многочисленные эксперименты демонстрируют достаточно хорошее согласие с теорией ЛШШ [1, 8, 11, 12, 22, 23, 56, 57].Модель ЛШШ основана на следующих предположениях:1) мишень считается аморфной, т. е. из рассмотрения исключаются случаи коррелированных последовательных столкновений;2) в работе используется потенциал, рассчитанный на основе статистической модели атома Томаса--Ферми, с учётом только электростатического взаимодействия между электронами;3) энергия, передаваемая атомам мишени в процессе столкновений, много меньше кинетической энергии иона;4) основными механизмами торможения частиц в обрабатываемом веществе являются неупругие соударения с электронами (электронное торможение) и упругие соударения с ядрами (ядерное торможение). Оба механизма считаются независимыми в процессах торможения;5) учитываются флуктуации энергии, обусловленные в процессе торможения только взаимодействием с ядрами;6) при описании взаимодействия иона с атомами подложки используется классическое приближение бинарных столкновений.Каждое из этих предположений ограничивает область применимости теории. В частности, предположение 1 исключает случай кристаллических и очень тонких аморфных мишеней. В этой модели не учитывается также оболочечное строение атомов. При близких атомных массах и порядковых номерах сталкивающихся атомов неупругие и упругие процессы становятся коррелированными, поскольку таким столкновениям соответствует значительная ионизация в обеих атомных подсистемах. Ионизация, в свою очередь, изменяет форму потенциала взаимодействия, а, следовательно, и угол рассеяния частиц. Такого рода корреляции могут существенно влиять на форму распределений ионов по пробегам (моменты кривой распределения высоких порядков).Используемая в теории ЛШШ статистическая модель атома Томаса-Ферми, позволяет достигнуть наилучшего совпадения результатов расчетов с экспериментальными данными.Рисунок 2.3 -- Схема пробега иона в твёрдом теле.(1) - поток ионов; (2) - путь иона в материале; (3), (4), (5) - атомы в узлах кристаллической решётки материала подложки; (6) и (7) - начальное и конечное положение иона при внедрении в материал подложки.Ионная имплантация (рисунок 2.3) охватывает два взаимосвязанных процесса: внедрение (легирование) и радиационную обработку (дефектообразование) [31]. При бомбардировке твердых тел тяжелыми заряженными частицами (массой более 1 а.е.м.) возникают эффекты, которые способствуют их торможению или рассеянию.Эти эффекты классифицируют следующим образом [2, 21, 22]:· Неупругие соударения со связанными электронами тормозящего вещества. Потеря энергии при таких соударениях обусловлена возбуждением атомов или молекул;· Неупругие соударения с ядрами. Они вызывают тормозное излучение, возбуждение ядра или ядерные реакции;· Упругие соударения со связанными электронами.· Упругие соударения с ядрами или атомами. При этом часть кинетической энергии передается атомам мишени.· Черенковское излучение. Оно возбуждается частицами, которые движутся в среде со скоростью, больше фазовой скорости света.При ионной имплантации частицы движутся со скоростью меньше фазовой скорости света, поэтому черенковское излучение отсутствует. При торможении частиц неупругие соударения с ядрами и упругие столкновения с электронами не играют большой роли по сравнению с неупругими соударениями с электронами (электронное торможение) и упругими соударениями с ядрами (ядерное торможение). Поэтому в дальнейшем целесообразно рассматривать лишь эти два механизма. Какой из этих эффектов будет преобладать, зависит от энергии и массы ускоренных частиц и массы и порядкового номера атомов вещества. В диапазоне энергий, важных для ионной имплантации (от 1 кэВ ( Дж) до 1 МэВ ( Дж)), следует рассматривать обе составляющие [21, 31].Для расчета торможения первичных ионов в веществе введено понятие сечения электронного и ядерного торможения Se,n [22, 31]:, (2.1)где -- число атомов в единице объема (? - плотность материала подложки, ; M2 - масса атома мишени, кг); -- потери кинетической энергии ионом на единицу длины пути в процессе столкновений с атомами или электронами мишени, Дж.Полный пробег частицы определяется из соотношения [21]:, (2.2)где R средняя общая длина пути иона в материале подложки, м, при его начальной энергии Е0, Дж.Наибольший практический интерес представляет проекция пробега иона на направление имплантации Rp, которая определяет наиболее вероятную ее глубину [3]:, (2.3)где M1 -- масса имплантируемого иона, кг.Эта формула справедлива в довольно широком интервале масс ион-атом, поэтому именно её и следует использовать при расчётах. Формула (2.3) позволяет рассчитать средний проецированный пробег для одноатомных мишеней [22]. Для расчёта пробега в мишенях сложного химического состава, каковыми являются сплавы, можно воспользоваться статистическими методами имитационного моделирования, в частности, методом Монте-Карло [20].В разделах 2.3.1 и 2.3.2 приведены расчётные формулы для ядерных и электронных потерь энергии ионом в веществе [22, 57]. Величина вклада ядерных и электронных потерь энергии в общие потери энергии ионом различна для разных энергетических диапазонов (рисунок 2.4).Из анализа графика на рисунке 2.4 следует, что при низких энергиях ионов () их торможение за счёт ядерных потерь энергии является доминирующим. С ростом энергии имплантируемых ионов упругие потери энергии достигают максимума в точке E1 и затем начинают уменьшаться. В то же время неупругие потери энергии продолжают увеличиваться. Таким образом, в области средних энергий ионов () в точке E2 электронные и ядерные тормозные сечения становятся сравнимы по величине. При дальнейшем увеличении энергии ионов неупругие потери энергии ионов существенно возрастают и упругие потери можно не учитывать. В высокоэнергетической области (энергия ионов 10-13 Дж и выше) при энергиях ионов выше точки E3 заключён диапазон энергий, в котором применима квантовая теория торможения быстрых ионов Бете-Блоха [22]. Уменьшение потерь энергии после точки E3 связано с тем, что они переходят в ионизационные потери. Подъём кривой при очень высоких энергиях обусловлен релятивистской поправкой [22].Рисунок 2.4 - Общий вид зависимости тормозных сечений электронного и ядерного торможения от энергии иона. Потери энергии определяются в основном электронным торможением, если энергия налетающих частиц превышает Eкр: , (2.4) где [57], Z1 и Z2 - зарядовые числа иона и атома мишени соответственно. Таким образом, из анализа графика на рисунке 2.4 и из условия (2.4) следует, что в диапазоне энергий 1 - 10 кэВ ( Дж), при необходимо учитывать как электронные, так и ядерные потери энергии ионами азота при имплантации в металлы и сплавы, а при можно учитывать только электронные потери энергии ионом. Рассмотрим далее зависимости для расчёта этих потерь. 2.3.1 Ядерное торможение иона в материалеЕсли проинтегрировать энергию, передаваемую ионом атому мишени при столкновении Tn по всем возможным потерям энергии при столкновении, то получим упругие потери энергии на единицу длины пути [1, 2, 12, 21, 22, 57]:, (2.5)где Tmax -- максимально возможная энергия, передаваемая при лобовом столкновении, Дж; d? -- дифференциальное поперечное сечение взаимодействия, м2.Таким образом, для нахождения потерь энергии ионом при столкновении с атомами поверхностного слоя материала образца, необходимо знать энергию Tn, Tmax и сечение рассеяния d?.Для нахождения вышеуказанных параметров рассмотрим процесс столкновений частиц на основе классической механики. Тогда с углом рассеяния сталкивающихся частиц можно связать прицельный параметр p и классическую траекторию в процессе столкновения. Уравнения, описывающие траектории взаимодействующих частиц, значительно упрощаются, если рассматривать движение в системе центра масс (СЦМ). Рисунок 2.5 иллюстрирует положение и угловые координаты частиц при максимальном их сближении в лабораторной системе координат (ЛСК). Одна из частиц (M1) до столкновения двигалась со скоростью v, а другая (M2) - покоилась. Углы отклонения частиц после столкновения в ЛСК 1 и 2 выражаются через угол формулами [22]:, , (2.6)где ? - угол отклонения иона в СЦМ при столкновении, рад.Абсолютные величины скоростей частиц после столкновения и могут быть выражены через угол ? формулами [22]:, . (2.7)Рисунок 2.5 - Схема столкновения двух частиц в ЛСК. - скорость иона до и после столкновения соответственно; - скорость атома после столкновения; - скорость центра масс; ?1, ?2 - углы отклонения в ЛСК после столкновения иона и атома соответственно; ? - угол отклонения иона в СЦМ; p - прицельный параметр; rmin - минимальное расстояние сближения частиц. Тогда упругие потери энергии Tn ионом при столкновении с атомом подложки в ЛСК рассчитываются согласно (2.7) по формуле: , (2.8) где E - энергия иона до столкновения; параметр Дж, определяет максимально возможную энергию, передаваемую при лобовом столкновении (когда частицы сближаются и удаляются по одной оси): . (2.9) Угол рассеяния ? налетающей заряженной частицы в центральном силовом поле c потенциальной энергией U(r) наиболее удобно решать исходя из законов сохранения энергии и момента импульса : , (2.10) . (2.11) где r - радиус-вектор иона, м; p прицельный параметр, м (расстояние, на котором ион прошёл бы от атома в отсутствие силового поля); приведенная масса, кг; и радиальная и поперечная составляющие скорости иона соответственно. Подставим величину из (2.11) в (2.10): . (2.12) Отсюда . (2.13) Преобразуем выражение (2.11) к виду: , (2.14) тогда из (2.13) и (2.14) получим , (2.15) и, следовательно, . (2.16) Рисунок 2.6 - Траектория частицы в СЦМ. - скорость иона до и после столкновения соответственно; r - радиус-вектор иона; ? - угол отклонения иона в СЦМ; p - прицельный параметр; rmin - минимальное расстояние сближения частиц. На рисунке 2.6 показана траектория движения иона в системе центра масс. Эта траектория симметрична по отношению к прямой, проведенной в ближайшую к центру точку орбиты (см. на рисунке 2.6 прямая ОА). Углы между ОА и обеими асимптотами к траектории одинаковы. Если обозначить эти углы ?0, то видно, что угол рассеяния иона в СЦМ равен: . (2.17) Из (2.16) следует, что . (2.18) Так как из (2.10) и (2.11) , , (2.19) То , (2.20) где rmin -- минимальное расстояние, на которое частица приближается к рассеивающему центру, м; v -- относительная скорость сталкивающихся частиц на "бесконечном" расстоянии друг от друга, . Таким образом, угол рассеяния иона ? в СЦМ зависит от формы потенциальной энергии поля U(r) и кинетической энергии иона Eотн: . (2.21) Величина rmin есть значение r при и определяется как корень выражения, стоящего под знаком радикала в формулах (2.16) и (2.20) [21, 22]: . (2.22) Важнейшей характеристикой процесса рассеяния является эффективное сечение рассеяния: , (2.23) где п -- число частиц, проходящих в единицу времени через единицу площади поперечного сечения однородного пучка; dN -- количество частиц, рассеянных в единицу времени в единицу телесного угла , т. е. рассеянных в углы, лежащие в интервалах от ? до ?+d? и от ? до ?+d?. Для ионов с энергией 1 - 10 кэВ ( Дж) связь между прицельным расстоянием и углом рассеяния взаимно однозначна, и в интервал углов от ? до ?+d? рассеиваются только те частицы, для которых прицельное расстояние заключено в интервале от р до p+dp. Число таких частиц равно , (2.24) и поэтому . (2.25) Следовательно, окончательно имеем. (2.26)Итак, зная потенциальную энергию взаимодействия сталкивающихся частиц U(r), энергию Tn, Tmax, ? и сечение рассеяния d? по формулам (2.8), (2.9), (2.20) и (2.26) можно найти упругие потери энергии ионом и дифференциальное сечение рассеяния.Главную роль играет выбор потенциала взаимодействия. Если скорость налетающей частицы сравнима со скоростью любого электрона атома мишени или меньше ее, то необходимо учитывать экранирование ядер атомными электронами. В настоящее время еще не найдено точное значение потенциала взаимодействия частиц с учетом экранирования ядер электронами [1, 2, 12, 21, 22, 57]. Однако существует несколько приближенных выражений для потенциала, хорошо описывающих взаимодействие частиц в различных энергетических интервалах [22, 57 - 61].Потенциал Томаса-Ферми-Фирсова [67 - 69]. При изучении систем со многими взаимодействующими частицами приходится ограничиваться приближенными методами, применение которых дает удовлетворительное описание реальных свойств и параметров. Для атомов и молекул такими методами являются: вариационный метод и метод самосогласованного поля Хартри--Фока [65, 70]. Вариационный метод обычно используется только для легких атомов, в то время как методом Хартри--Фока могут быть изучены любые атомные системы. В методе самосогласованного поля каждый электрон рассматривается движущимся в сглаженном симметричном относительно центра (ядра) потенциальном поле, образованном ядром и всеми электронами. Состояние отдельного электрона атома может быть описано некоторой собственной функцией, а собственная функция всего атома комбинируется из собственных функций отдельных электронов.Для атомной системы с большим числом электронов движение частиц под действием самосогласованного потенциала может считаться квазиклассическим в преобладающей части пространства. Потенциал в этом случае является слабоменяющейся функцией координат за исключением области вблизи ядра и периферийной части атома. Квазиклассическое приближение к уравнениям Хартри--Фока носит название приближения Томаса--Ферми [63, 71].В статистической модели атома Томаса--Ферми объем атома разделяется на элементы объема dv, в которых содержится значительное число электронов и в каждом из них потенциал можно считать постоянным. Эти условия не выполняются в периферийной области атомов из-за малого количества электронов, а около ядра -- из-за резкого изменения потенциала. Для устранения этих недостатков квазиклассического приближения приходится вводить квантовые поправки. В статистической модели атома Томаса--Ферми принимается во внимание только электростатическое взаимодействие между электронами, тогда как взаимодействие электронов с параллельными (обменная поправка) и антипараллельными (корреляционная поправка) спинами не учитывается.Таким образом, из статистической теории атомных систем можно найти распределение потенциала или электронной плотности как функции расстояния от ядра r [22, 57]:, (2.27)где ; радиус экранирования Томаса-Ферми-Фирсова, м [22, 57]. Этот потенциал более приближен к реальному, особенно для атомов с большим порядковым номером Z. Именно поэтому он наиболее подходит для расчётов пробегов ионов азота в металлах и сплавах.Функция экранирования находится как решение дифференциального уравнения , но аналитически это уравнение не решается. В работе [67] представлена в табулированном виде. Однако пользоваться численными значениями не всегда удобно, поэтому до настоящего времени не прекращаются попытки найти её приближённое значение. Для практических задач исследователями получен ряд аппроксимаций функции Томаса-Ферми:- Зоммерфельда [58]:; (2.28)- Гаспара [59]:; (2.29)- Тейтца [60]:; (2.30)- Видефола [61]:. (2.31)Литературные данные [46, 47, 57 - 61, 76, 78] не позволяют выбрать из этих аппроксимаций наилучшую, поэтому при практических расчетах можно использовать любую из предложенных функций.С повышением энергии ионов возрастает вклад неупругого торможения на электронах материала подложки и при можно учитывать только электронное торможение иона. В разделе 2.3.2 рассмотрим потери энергии, происходящие при этом процессе.2.3.2 Электронное торможение иона в материалеВ настоящее время еще не получена общая формула, описывающая неупругие потери энергии ионом во всем диапазоне энергий имплантации [3]. Поэтому приходится ограничиваться формулами, справедливыми для узких энергетических интервалов.Расчет электронных потерь энергии можно проводить на основе теорий Фирсова [22] и Линдхарда - Шарфа [21]. Для диапазона энергий имплантируемых ионов 1 - 10 кэВ ( Дж) неупругие потери энергии вычислены только для потенциала Томаса--Ферми--Фирсова.Формула Линдхарда--Шарфа [47]. Авторы нашли формулу, позволяющую вычислить потери энергии на единицу длины пути:, (2.32)где -- скорость иона до столкновения, ; v0 -- скорость электрона на первой боровской орбите атома водорода, ; a0 - радиус экранирования Бора, м.Формула (2.32) подходит для расчёта электронных потерь энергии ионом в одноатомных поликристаллических материалах. В формуле нет связи между потерями энергии и прицельным параметром, что увеличивает погрешность результатов. Поэтому для расчётов методом Монте-Карло целесообразнее использовать формулу Фирсова [74] или Кишиневского [75].Формула Фирсова. В теории Фирсова учитывается непосредственная связь между потерей энергии и прицельным параметром, что позволяет построить более адекватную модель, основанную на вероятностных методах расчета.Средняя энергия Te передаваемая атому мишени при одном столкновении, равна:, (2.33)Нахождение потерь энергии на единицу длины пути сопряжено со значительными вычислительными трудностями, так как при этом необходимо проводить усреднение по всем параметрам соударений. Однако формулу (2.33) можно использовать в методе Монте-Карло, так как в этом случае потери энергии ионом считаются для каждого отдельного взаимодействия ион-атом. Формула применяется для атомов с близкими Z, причем Z1 и Z2 должны быть больше 10. При ионной имплантации азота в металлы Z1 Z2 и Z1 = 7 (Z1 < 10), значит использование формулы (2.33) для расчёта электронных потерь энергии ионами азота при имплантации в металлы и сплавы может существенно увеличить погрешность результата. Обобщение формулы (2.33) на случай, когда Z1 Z2, получено Л. М. Кишиневским.Формула Кишиневского. Согласно его расчетам, (2.34)где Zmin -- меньший, a Zmax -- больший из зарядов сталкивающихся частиц.Формула (2.34) позволяет получить более точные результаты, так как учитывает связь между потерями энергии и прицельным параметром и учитывает различие между Z1 и Z2. Она наиболее подходит для расчёта методом Монте-Карло электронных потерь энергии ионами азота при имплантации в металлы или сплавы.Рассчитав потери энергии по формулам (2.5) и (2.32) можно найти средний пробег и средний проецированный пробег ионов по формулам (2.2) и (2.3) в различных фазах сплавов или чистых металлах. Для расчёта потерь энергии ионами при имплантации в реальные материалы, имеющие сложный химический состав, необходимо воспользоваться соотношениями (2.8) и (2.34). Также, определив угол рассеяния ? из формулы (2.21), можно по формуле (2.25) определить дифференциальное сечение рассеяния. Полученные из формул (2.2) и (2.3) значения пробегов ионов используются для расчёта распределения примеси в твёрдом теле после имплантации. 2.4 Распределение примеси и дефектов в материале подложки в зависимости от энергии ионов азотаВследствие статистического характера взаимодействия ионов с атомами мишени наблюдается разброс пробегов ионов. Для металлов и сплавов распределение пробегов ионов приблизительно гауссовское. Такое распределение характеризуется двумя параметрами -- средним значением Rp и среднеквадратическим отклонением ?Rp (страгглингом пробега).Для определения распределения имплантированных атомов наряду с параметрами пробега Rp и ?Rp нужно знать полную дозу имплантированных ионов Ф, м-2. Её можно получить через полный заряд всех ионов Q, Кл, который можно измерить в процессе имплантации [22]. Удельная доза имплантируемых ионов:, (2.35)где q -- заряд иона, Кл; Q -- полный заряд, Кл; А -- площадь имплантации, м2.При использовании этой формулы предполагается, что все попавшие на мишень ионы являются ионами заданного вида примеси с зарядом q и остаются в имплантируемой мишени и что устройство измерения правильно интегрирует ток пучка, а легируемая площадь А корректно определена.Однако, приведенные выше предположения не всегда достижимы в существующих системах измерения дозы. Поэтому измерение дозы имплантации всегда проводится с той или иной погрешностью, которая обусловлена следующими факторами: неоднородностью приходящего на мишень ионного пучка по зарядовому и массовому составу, недостатками измерения цилиндром Фарадея и блоком измерения дозы.Основную погрешность в измерении дозы имплантации вносит нейтральная компонента пучка, которая появляется в результате перезарядки ионов в области после ускорения. Этот происходит при столкновении ионного потока с потоком выбитых ими электронов с поверхности материала подложки. Нейтральные атомы не только нарушают корреляцию между интегрируемым током и дозой, но для систем с электростатическим сканированием приводят к значительной неоднородности дозы имплантации.Одним из основных процессов, сопровождающих ионное облучение твёрдого тела является образование в нём нарушений кристаллической структуры из-за передачи энергии иона атомам и электронам вещества. Определяющую роль при образовании дефектов играют ядерные взаимодействия. Если энергия, передаваемая ионом атому решётки (упругие потери), превышает энергию связи атома в кристаллической решётке, то последний выбивается из своего положения и переходит в междоузлие. Таким образом возникает точечный дефект - вакансия-межузельный атом (пара Френкеля). Для железа и сплавов на его основе энергия связи составляет 40 эВ. Если энергия, переданная первично смещённому атому, превышает энергию связи в несколько раз и более, то атом, в свою очередь может сместить другие атомы, те - следующие и т.д. Так образовываются каскады смещений. Напряжения, возникающие при образовании вакансии являются растягивающими, а имплантированный азот создаёт напряжения сжатия, то есть противоположные по знаку. Таким образом, для расчёта остаточных концентрационных напряжений, кроме концентрации ионов, необходимо учитывать и концентрацию вакансий.Концентрация ионов Сi(х) как функция расстояния от поверхности выражается соотношением (2.36), а концентрация вакансий Сv(х) соотношением (2.37) [1 - 3, 12, 21, 57]:, (2.36), (2.37)где х -- расстояние от поверхности металла (глубина проникновения иона в материал), м; , ?x, kd - характеристики распределения вакансий [3].Как показано в работе [21] в режиме насыщения максимальная концентрация имплантированной примеси Nmax определяется выражением:, (2.38)где N плотность атомов обрабатываемого материала, м-3, S - коэффициент распыления.Коэффициент распыления равен числу атомов, выбиваемых одним падающим ионом и рассчитывается по формуле:, (2.39)где s - безразмерный коэффициент, характеризующий эффективность передачи энергии, который зависит от отношения масс взаимодействующих частиц; Sn сечение упругого торможения при начальной энергии иона E0, Дж; Eb - энергия связи атомов на поверхности обрабатываемого материала, Дж. Таким образом, теоретически величина предельной концентрации примеси не зависит от дозы облучения, определяясь плотностью атомов обрабатываемого материала и коэффициентом распыления его ионами имплантируемой примеси. Поскольку коэффициент распыления является функцией порядковых номеров и массовых чисел иона и обрабатываемого материала, а также энергии иона, то величина Nmax будет существенно зависеть от этих параметров. Поэтому изменяя энергию иона можно менять максимальную концентрацию имплантированной примеси. Также и для различных материалов подложки эта величина будет разной.Знание распределения примеси и точечных дефектов в материале подложки после имплантации необходимо для нахождения остаточных концентрационных напряжений.2.5 Остаточные концентрационные напряженияКак правило, глубина модифицированного слоя значительно меньше размеров легированной поверхности изделия. Тогда имплантированный материал можно схематизировать как полупространство. Предполагаем, что до обработки поверхность была свободна от напряжений, а начальные концентрации дефектов и примесей равнялись нулю. При наличии примесей и дефектов поверхностный слой растягивается или сжимается и затем остается в таком состоянии. Напряжения в поверхностном слое (рисунок 2.7) описываются следующим уравнением [34]: (2.40)где ?xx, ?yy, ?zz - нормальные напряжения, действующие вдоль координатных осей, ; Сi(х) - концентрация ионов, м-3; Сv(х) - концентрация вакансий, м-3; ? - модуль упругости материала подложки, ; ? - атомный объём кристаллической решётки материала подложки, м3; ?V - релаксационный объём точечного дефекта. |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |