рефераты рефераты
Домой
Домой
рефераты
Поиск
рефераты
Войти
рефераты
Контакты
рефераты Добавить в избранное
рефераты Сделать стартовой
рефераты рефераты рефераты рефераты
рефераты
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты
 
МЕНЮ
рефераты Проектирование высоковакуумной магистрали рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Проектирование высоковакуумной магистрали

Проектирование высоковакуумной магистрали

1

19

Введение

1. Цель работы: закрепить знания, полученные при изучении дисциплины «Основы вакуумной техники», по проектированию и расчету откачной вакуумной системы технологического оборудования микроэлектроники. Студент должен рассчитать газовые потоки, правильно и обоснованно выбрать откачные средства, рассчитать проводимости соединительных трубопроводов, оценить совместимость откачных средств, определить фактическую быстроту откачки и перепады давления в трубопроводах, а так же на основании проведенных расчетов выбора типоразмеров откачных средств, затворов и вентилей, выполнить чертеж вакуумной системы (в эскизном исполнении).

1. Расчет высоковакуумной магистрали

1.1 Определение стационарного газового потока

,

где - поток газа, определяющийся технологическим выделением газа из нагреваемых элементов внутрикамерных устройств,

- натекание через уплотнения рабочей камеры,

- диффузное газовыделение,

- газовыделение от подложки.

,

,

, где - газовыделение рабочей камеры,

, [лит-ра 2, стр. 64-65]

- внутренняя поверхность камеры,

где - размеры рабочей камеры,

-размеры присоединительного фланца;

,

, где - удельное газовыделение материала (Cu) при

заданной температуре, [см. лит-ра 3, стр. 471, приложение]

,

- объем подложкодержателя,

- плотность меди,

, [см. лит-ра 4, стр115, табл38]

- время газовыделения;

.

Тогда стационарный газовый поток равен

.

1.2 Предварительный выбор высоковакуумного насоса

Ориентировочная быстрота откачки рабочей камеры диффузионным насосом

.

Быстрота действия диффузионного насоса

,

.

По быстроте действия в диапазоне впускных давлений выбираем насос НВД-1400 с характеристиками (литература 2, стр. 254, табл. 10.6):

Быстрота действия .

Предельное остаточное давление .

Наибольшее выпускное давление .

Расход охлаждающей воды .

Мощность электронагреватель 2,2 кВт.

Габаритные размеры .

Масса .

Объем масла .

Условный проход фланца:

входного .

выходного ;

Требуемая быстрота действия форвакуумного насоса .

1.3 Расчет проводимостей и выбор элементов высоковакуумной магистрали

Расчет проводимости шевронно-конической ловушки

, где - удельная проводимость ловушки

- (литер. 2, стр. 258, табл. 11.1),

- площадь входного отверстия ловушки

,

- задаваемый размер.

.

Проверим режим течения в ловушке:

давление в ловушке:

, где - давление на входе в насос ,

- быстрота действия насоса,

.

Выражение - режим молекулярный.

Расчет проводимости трубопровода (е)

Задаем диаметр трубопровода .

Проводимость участка

. [литер. 2, стр. 41, формула. 3.58]

Найдём отношение

[литер. 2, стр. 41, табл. 3.3],

.

Проверим режим течения в трубопроводе (е):

давление в трубопроводе:

.

Выражение - режим молекулярный.

Проводимость затвора

Выбираем затвор РСУ 1 А -200 [литер. 2, стр. 109, табл. 7.1] с проходным диаметром и проводимостью .

Проверим режим течения в затворе

давление в затворе:

.

Выражение - режим молекулярный.

Расчет проводимости трубопровода (д)

Задаем диаметр трубопровода .

Проводимость участка

.

Найдём отношение

[литер. 2, стр. 41, табл. 3.3],

.

Проверим режим течения в трубопроводе (д):

давление в трубопроводе:

.

Выражение - режим молекулярный.

Расчёт проводимости вдоль заливной ловушки

Внешний диаметр ловушки , внутренний диаметр ловушки ,

длина ловушки.

Для цилиндрического трубопровода с коаксиальным расположением стержня проводимость вычисляется

.

Проверим режим течения в заливной ловушке

давление в заливной ловушке:

.

Выражение - режим молекулярный.

Расчет проводимости трубопровода (г)

Задаем диаметр трубопровода .

Проводимость участка

.

Найдём отношение

(литер. 2, стр. 41, табл. 3.3),

.

Проверим режим течения в трубопроводе (г)

давление в трубопроводе:

.

Выражение - режим молекулярный.

Проводимость затвора

Выберем затвор [литер. 2, стр. 109, табл. 7.1] такой же как и с проходным диаметром и проводимостью .

Проверим режим течения в затворе

давление в затворе:

.

Выражение - режим молекулярный.

Расчёт проводимости присоединительного фланца (о)

Проводимость фланца

Проверим режим течения во фланце

давление во фланце:

.

Выражение - режим молекулярный.

Проводимость:

.

Сечение рабочей камеры

Сечение фланца

.

Давление в рабочей камере:

- режим молекулярный

Расчет общей проводимости высоковакуумной магистрали

Время откачки камеры высоковакуумным насосом до предельного давления в камере

где - объем рабочей камеры.

Действительные параметры откачки высоковакуумным насосом

- эффективная быстрота откачки,

- фактическое предельное давление в камере.

Оценка пригодности высоковакуумного насоса

Проводимость затвора

Выберем затвор ЗППл-63 ([2], стр. 109, табл. 7.1) с проходным диаметром и проводимостью .

Давление на выходе затвора:

.

Расчет давления в трубопроводе (в) до диафрагмы

Задаем диаметр трубопровода .

Проводимость участка

.

Найдём отношение :

([2], стр. 41, табл. 3.3),

.

Проверим режим течения в трубопроводе (в)

давление в трубопроводе:

.

Выражение - режим молекулярный

Проводимость диафрагмы

.

.

2. Расчет форвакуумной магистрали

2.1 Предварительный выбор механического насоса

Минимальная быстрота действия механического (форвакуумного) насоса.

.

Выбираем механический насос НВЗ-20 [лит-ра 2, стр. 199, табл. 9.9] с параметрами:

Быстрота действия .

Предельное остаточное давление:

парциальное без газобаласта ,

полное без газобаласта ,

полное с газобаластом .

Объем масла, заливаемого в насос .

Расход воды в рубашке охлаждения - охлаждение воздушное

Частота вращения .

Мощность электродвигателя 2,2кВт.

Число ступеней 1.

Габаритные размеры .

Масса .

Расчет проводимости трубопровода (н) до затвора

.

Задаем диаметр трубопровода .

Проводимость участка

.

Найдём отношение

([2] стр. 41, табл. 3.3),

.

Проверим режим течения в трубопроводе (н):

давление в трубопроводе:

.

Выражение - режим промежуточный.

Проводимость затвора

Выбираем затвор ЗППл-63 с проходным диаметром и проводимостью .

Давление на выходе затвора:

.

Расчет проводимости трубопровода (н) после затвора

.

Задаем диаметр трубопровода .

Проводимость участка

.

Найдём отношение

([2], стр. 41, табл. 3.3),

.

Проверим режим течения в трубопроводе (н):

давление в трубопроводе:

.

Выражение - режим промежуточный.

Расчет проводимости трубопровода (л, к)

.

Задаем диаметр трубопровода .

Проводимость участка

.

Найдём отношение

([2], стр. 41, табл. 3.3),

.

Проверим режим течения в трубопроводе (л, к):

давление в трубопроводе:

.

Выражение - режим промежуточный.

Проводимость затвора

Выбираем затвор ЗППл-63 с проходным диаметром и проводимостью .

Давление на выходе затвора:

.

Расчет проводимости трубопровода (и)

.

Задаем диаметр трубопровода .

Проводимость участка

.

Найдём отношение

([2], стр. 41, табл. 3.3),

.

Проверим режим течения в трубопроводе (и):

давление в трубопроводе:

.

Выражение - режим вязкостный.

Время откачки камеры форвакуумным насосом

.

.

Расчет общей проводимости форвакуумной магистрали

Диаграмма распределения давления

8 - ВВН; 7 - шевронно-коническая ловушка; 6 - трубопровод (е); 5 - затвор ;

4 - заливная ловушка; 3-трубопровод (г); 2-затвор ; 1 - фланец (о); 0 - рабочая камера;

Элементы системы

Временная циклограмма

Вакуумная камера

Список используемой литературы

1. Курс лекций по вакуумной технике

2. Фролов Е.С. Справочник «Вакуумная техника. Справочник». 1985 г.

3. А.И. Пипко «Конструирувание и расчёт вакуумных систем». 1979 г.

4. Гетлинг Б.В. «Справочник электротехника». 1961 г.

РЕКЛАМА

рефераты НОВОСТИ рефераты
Изменения
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер


рефераты СЧЕТЧИК рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты © 2010 рефераты