рефераты рефераты
Домой
Домой
рефераты
Поиск
рефераты
Войти
рефераты
Контакты
рефераты Добавить в избранное
рефераты Сделать стартовой
рефераты рефераты рефераты рефераты
рефераты
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты
 
МЕНЮ
рефераты Расчёт зоны плавления рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Расчёт зоны плавления

Расчёт зоны плавления

15

Кафедра КТЭИ

Переработка полимеров

Лабораторная работа

"Расчёт зоны плавления"

2009

Цель лабораторной работы - изучение процессов тепломассопереноса полимера в зоне плавления червячного пресса. Задачей лабораторной работы является исследование влияния геометрических, технологических и физических факторов на изучаемый процесс с использованием метода математического моделирования.

Задание

В соответствии со своим вариантом задания выполнить следующие расчеты.

1) Для заданного номинального технологического режима:

- разработать алгоритм и расчетную программу;

- рассчитать компоненты скоростей и относительную скорость;

- определить длину зоны плавления, определить Ф и ; определить длину зоны плавления для канала постоянной глубины, для канала переменной глубины;

- рассчитать ширину твердой пробки в зависимости от длины зоны плавления или для канала постоянной или переменной глубины соответственно;

- определить распределение скорости плавления по длине;

- рассчитать распределение температуры по высоте канала в пяти различных сечениях в зоне плавления для жидкой и твердой фаз соответственно.

2) Исследовать влияние на процесс плавления полимера следующих факторов:

- температуры корпуса;

- начальной температуры материала;

- частоты вращения шнека;

- расхода материала;

- физико-механических свойств материала;

- угла конусности винтовой нарезки червяка.

3) Провести анализ полученных закономерностей процессов тепломассопереноса полимера в зоне плавления экструдера.

4) Построить графики полученных зависимостей.

5) Оформить отчет.

Исходные данные

Таблица 1. Параметры экструдера

Номер варианта

Диаметр шнека, м

Угол нарезки, гр.

Шаг нарезки, м

Ширина гребня, м

Высота канала в з. п., м

Скорость вращения, об/мин

Расход мате-риала, кг/с

Темпе-ратура в з. п., С

5

0.09

17.67

0.09

0.009

0.015-0.007

60

0.01944

220-250

Таблица 2. Физико-механические параметры

s \m

Дж/м/с/С

s\ m

кг/м3

cs \cm

Дж/кгС

м

Па·с

Тs,

С.

3

0.22\ 0.25

930 \1000

2010\2060

12000

25

Тb=235 oC, - температура корпуса; Tm=140 oC, - температура плавления полимера.

Краткие теоретические сведения

Для математического описания процессов движения и плавления в канале пластицирующего экструдера возможно использовать различные подходы, основанные на тех или иных упрощающих предположениях. Наиболее простой математической моделью процесса плавления является модель З.Тадмора, позволяющая в одномерной постановке определить зависимость длины зоны плавления от различных технологических, геометрических характеристик и свойств перерабатываемого материала.

Допущения модели Тадмора:

1) кривизной канала пренебрегаем;

2) процесс стационарный;

3) расплав является ньютоновской жидкостью;

4) в целом задача одномерная;

5) характеристики материала постоянны;

6) пробка гранул имеет прямоугольную форму;

7) плавление происходит только у внутренней поверхности корпуса;

8) температура пробки гранул изменяется только по высоте канала;

Представление процессов движения и теплообмена полимеров основывается на законах сохранения массы, количества движения и энергии.

Главной задачей исследования является нахождение длины зоны плавления, которая определяется длиной канала, где ширина твердой фазы обращается в нуль.

Обозначим ширину пробки гранул через X, получим зависимость X=X(z), т. е. изменение ширины пробки по длине канала. Выделим из пробки гранул элементарный объем. На рис. 3 представлен элементарный фрагмент пробки и распределение температуры в поперечном сечении канала

Рис. 3. Элементарный объём пробки гранул и температурный профиль пробки гранул

(1)

(2)

Где Vb - окружная скорость; Vbz - компонента окружной скорости в направлении оси z; Vbx - компонента окружной скорости в направлении оси x; Vsz - скорость пробки вдоль оси z; Vsy - скорость пробки вдоль оси y; Tb - температура корпуса; Ts - температура загружаемого материала.

Пробка гранул движется с локальной скоростью Vsz, направленной вдоль канала червяка. Скорость твердой пробки относительно поверхности (относительная скорость vj) цилиндра находится как:

(3)

Введение относительной скорости Vj позволяет упростить задачу (в частности, это касается граничных условий).

Гидродинамика расплава, с учетом указанных ранее допущений, описывается следующими уравнениями движения и граничными условиями:

(4)

(5)

Интегрируя уравнение (4) с учетом (5), получим изменение скорости расплава в пленке в зависимости от координаты y по высоте:

(6)

Рассмотрим уравнение энергии для жидкой фазы в пленке толщиной :

(7)

Граничные условия:

(8)

Отметим, что все теплофизические характеристики для расплава будем обозначать индексом m (от слова melt - расплав), а для твердой фазы - s (stone - камень).

Проинтегрируем (7) с учетом (6) и (8):

(9)

Уравнения (6) и (9) описывают процессы тепломассообмена в пленке расплава. Для твердой фазы уравнения энергии имеют следующий вид:

, (10)

. (11)

Решение уравнения (10) с учетом (11) позволяет определить изменение температуры пробки по высоте:

(12)

где

Отсюда видно, что распределение температуры в пробке не зависит от координаты z, следовательно, не изменяется по длине, сохраняя один и тот же вид зависимости.

Используя уравнения (12) и (9), определим величины потоков тепла на границе раздела твердой и жидкой фаз.

(13)

где - теплота фазового перехода, Дж/кг.

Уравнение (13) связывает толщину слоя расплава со скоростью Vsy. Для определения последних составим уравнение баланса масс в жидкой фазе.

Пренебрегая малыми величинами, будем иметь:

где - скорость плавления материала на единичной длине канала, кг/м.

Откуда:

(14)

Подставляя уравнение (14) в уравнение (13) и выражая величину , получим:

(15)

Для скорости плавления имеем выражение:

(16)

Приближаясь к решению задачи, т. е. к определению зависимости X=X(z), запишем уравнение баланса фаз, теперь для твердой фазы на участке dz и, переходя к пределу, получим уравнение:

(17)

Где выражение для (X), полученное на основании вышеизложенных выкладок, определяется уравнением (16).

Проинтегрируем уравнение (17) с учетом условия X(0)=w, для канала постоянной глубины будем иметь:

(18)

Из выражения (18), положив X=0, определяем длину зоны плавления:

(19)

Для канала переменной глубины, высота которого изменяется по закону: H=Hl-Az, где H(0)=Hl, A- угол конусности червяка, решение выглядит так:

(20)

Длина зоны плавления в этом случае определится:

(21)

Расчетная часть

Разработанная программа:

program Presnetsov;

Uses crt;

var i,l,s,Tg,n,m,Cs:integer;

P,Zpl,Tb,Ts,Q,LamdaM,Phi:real;

j:boolean;

f1:text;

Zav:string;

Procedure Plavlenie(j:boolean;P,Tb,Ts,Q,LamdaM,Phi:real;Zav:string;n,l,m,Cs:integer);

var {Tb,}Tm,Rom,Ros,k,s:integer;

Vb,Dsh,Vbx,Pvi,Vbz,Vsz,ShN,ShG,H,W,hcp,Vj,Ph,Lamda,LamdaS,

Cm,Psi,X,Z,omega,Y,sigma,Vsy,YY,Zpl:real;

Tg,Ttv:single;

f,fo,f1:text;

begin

Dsh:=0.09;

ShN:=0.09;

ShG:=0.009;

H:=0.011;

Ros:=930;

Rom:=1000;

LamdaS:=0.22;

Lamda:=140000;

Cm:=2060;

Tm:=140;

W:=ShN-ShG;

Vb:=pi*n*Dsh/60;

Vbx:=Vb*sin(Phi);

Vbz:=Vb*cos(Phi);

Vsz:=Q/(Ros*W*H);

Vj:=sqrt(sqr(Vb)+sqr(Vbz)-2*Vb*Vsz);

Ph:=sqrt(Vbx*Rom*(LamdaM*(Tb-Tm)+m*sqr(Vj)/2)/(2*(Cs*(Tm-Ts)+Lamda)));

Psi:=Ph/(Ros*Vsz*sqrt(W));

Zpl:=2*H/Psi;

assign(fo,'Omega.txt');

assign(f1,'Zpl.txt');

if P=0 then begin

rewrite(fo);

rewrite(f1);

writeln(fo,'Zav. Omega ot Z');

writeln(fo,'Z',' ','Omeg');

end;

Z:=0;k:=0;Y:=0;YY:=0;

if l=1 then begin

readln;

writeln(Zav);

end;

Writeln(P:3:3,' ','Zpl=',Zpl:1:5);

assign(f,'Tem.txt');

if j=true then begin

rewrite(f);

writeln(f,'YY',' ','Tg',' ','Y',' ','Ttv');

end

else begin

append(fo);

append(f1);

if l=1 then writeln(f1,Zav);

writeln(f1,P:3:3,' ',Zpl:1:5);

end;

for i:=1 to 5 do begin

X:=W*(1-Ph*Z/(2*Ros*Vsz*H*sqrt(W)));

omega:=Ph*sqrt(X);

sigma:=sqrt(X*2*(LamdaM*(Tb-Tm)+m*sqr(Vj)/2)/(Vbx*Rom*(Cs*(Tm-Ts)+Lamda)));

Vsy:=Vbx*Rom*sigma/(2*Ros*X);

if j=true then

begin

for s:=1 to 6 do begin

Ttv:=(Tm-Ts)*exp(Ros*Vsy*Ros/(LamdaS*Cs)*Y)+Ts;

Tg:=m*sqr(Vj)*YY/(2*LamdaM*sigma)*(1-YY/sigma)+(Tb-Tm)*YY/sigma+Tm;

writeln('Y=',' ',Y:1:2,' ','YY=',YY:1:5,' ','Tg=',' ',Tg:3:3,' ','Ttv=',Ttv:3:1);

append(f);

write(f,YY:1:5,' ',Tg:3:1,' ',Y:1:2,' ',Ttv:3:1);

writeln(f);

YY:=YY+sigma/5;

Y:=Y-0.5;

end;

writeln(f);

close(f);

end;

Y:=0;YY:=0;

k:=k+1;

if j=true then begin

writeln(k,' ','Z=',Z:1:5,' ','sigma=',sigma:1:5,' ','X=',X:1:5,' ','omega=',omega:1:5);

writeln(fo,Z:1:5,' ',Omega:1:5);

readln;

end;

Z:=Z+Zpl/5;

end;close(fo);close(f1);

end;

Begin

clrscr;

Tb:=235;

Ts:=25;

n:=60;

Q:=0.01944;

LamdaM:=0.25;

m:=12000;

Cs:=2010;

Phi:=17.67*pi/180;

j:=true;

Plavlenie(j,P,Tb,Ts,Q,LamdaM,Phi,Zav,n,l,m,Cs);

j:=false;

Zav:='Zavis. Zpl ot Tb';

for l:=1 to 5 do begin

Tb:=l*50;

P:=Tb;

Plavlenie(j,P,Tb,Ts,Q,LamdaM,Phi,Zav,n,l,m,Cs);

end;

Tb:=235;

Zav:='Zavis. Zpl ot Ts';

for l:=1 to 5 do begin

Ts:=l*10;

P:=Ts;

Plavlenie(j,P,Tb,Ts,Q,LamdaM,Phi,Zav,n,l,m,Cs);

end;

Ts:=25;

Zav:='Zavis. Zpl ot n';

for l:=1 to 5 do begin

n:=l*20;

P:=n;

Plavlenie(j,P,Tb,Ts,Q,LamdaM,Phi,Zav,n,l,m,Cs);

end;

n:=60;

Zav:='Zavis. Zpl ot Q';

for l:=1 to 5 do begin

Q:=l*0.01;

P:=Q;

Plavlenie(j,P,Tb,Ts,Q,LamdaM,Phi,Zav,n,l,m,Cs);

end;

Q:=0.01944;

Zav:='Zavis. Zpl ot LamdaM';

for l:=1 to 5 do begin

LamdaM:=l*0.1;

P:=LamdaM;

Plavlenie(j,P,Tb,Ts,Q,LamdaM,Phi,Zav,n,l,m,Cs);

end;

LamdaM:=0.25;

Zav:='Zavis. Zpl ot m';

for l:=1 to 5 do begin

m:=l*400;

P:=m;

Plavlenie(j,P,Tb,Ts,Q,LamdaM,Phi,Zav,n,l,m,Cs);

end;

m:=12000;

Zav:='Zavis. Zpl ot Cs';

for l:=1 to 5 do begin

Cs:=l*800;

P:=Cs;

Plavlenie(j,P,Tb,Ts,Q,LamdaM,Phi,Zav,n,l,m,Cs);

end;

Cs:=2010;

Zav:='Zavis. Zpl ot Phi';

for l:=1 to 5 do begin

Phi:=l*10*pi/180;

P:=Phi;

Plavlenie(j,P,Tb,Ts,Q,LamdaM,Phi,Zav,n,l,m,Cs);

end;

readln;

end.

Результаты полученные с помощью программы приведены в таблицах:

Zpl=0,61475 м Ф=0,22 и =0,308;

Таблица 1. Длина зоны плавления при различных факторах

Tb, оС

Zpl, м

Ts, оС

Zpl, м

n, об/мин

Zpl, м

Q, кг/с

Zpl, м

200

0,43564

10

0,45068

20

2,21279

0,01

0,2181

250

0,43247

20

0,43925

40

0,80096

0,02

0,4465

300

0,42938

30

0,42751

60

0,43342

0,03

0,68634

350

0,42634

40

0,41544

80

0,27997

0,04

0,93899

400

0,42337

50

0,40301

100

0,19951

0,05

1,20602

лm, Дж/(мсС)

Zpl, м

м, Па·с

Zpl, м

ц, рад

Zpl, м

0,1

0,43706

400

1,76866

10,03185

0,56336

0,2

0,43462

800

1,42535

20,00637

0,41116

0,3

0,43222

1200

1,2265

30,03822

0,35364

0,4

0,42987

1600

1,09284

40,01274

0,32875

0,5

0,42755

2000

0,99511

50,04459

0,32067

Таблица 2. Значения ширины пробки при различной длине зоны плавления

Zpl, м

0

0,1223

0,2459

0,3689

0,4918

0,61475

X, м

0,081

0,0648

0,0486

0,0324

0,0162

0

По данным таблицы построены зависимости:

Рис. 1. Зависимость ширины твердой пробки от длины зоны плавления

С увеличением длины зоны плавления все большее количество полимера плавиться, поэтому ширина твердой пробки становиться меньше.

Рис. 2. Распределение скорости плавления по длине

При увеличении зоны плавления увеличивается объем расславленного полимера, вследствие чего сила трения между внутренней поверхностью корпуса и полимером уменьшается, поэтому полимер будет плавиться с меньшей скоростью.

Рис. 3. Распределение температуры в зоне плавления по высоте канала для жидкой фазы

Рис. 4. Распределение температуры в зоне плавления для твердой фазы

Рис. 5. Зависимость длины зоны плавления от температуры корпуса

При росте температуры корпуса длина зоны плавления уменьшается, т. к. чем больше температура корпуса, тем быстрее полимер будет плавиться, следовательно, длина зоны плавления уменьшится.

Рис. 6. Зависимость длины зоны плавления от начальной температуры полимера

Зависимость на рисунке объясняется тем, что чем больше начальная температура полимера, тем меньше нужно времени для расплава полимера.

Рис. 7. Зависимость длины зоны плавления от частоты вращения шнека

При увеличении частоты вращения шнека возрастает скорость пробки относительно внутренней поверхности корпуса, при этом увеличивается сила трения, а значит и количество выделяемого тепла. При большем количестве выделяемой энергии полимер плавится быстрее, следовательно длина зоны плавления уменьшается.

Рис. 8. Зависимость длины зоны плавления от расхода

С ростом расхода увеличивается объем полимера, следовательно при том же количестве выделяемого тепла потребуется больше времени для расплава полимера, поэтому зона плавления увеличивается.

Рис. 9. Зависимость длины зоны плавления от коэффициента теплопроводности

С ростом теплопроводности полимер быстрее нагревается и плавится, следовательно, уменьшается зона плавления.

Рис. 10. Зависимость длины зоны плавления от вязкости

С ростом вязкости возрастает сила трения между слоями полимера, в следствии чего при взаимном трении гранул полимера друг о друга будет выделяться больше тепла, которое способствует ускорению процесса плавления полимера.

Рис. 11. Зависимость длины зоны плавления от угла нарезки

При увеличении угла нарезки возрастает относительная скорость пробки, следовательно, возрастает сила трения между пробкой и внутренней поверхностью экструдера, выделяется большее количества тепла, что ведет к быстрому расплаву полимера, значит, уменьшается длина зоны плавления.

РЕКЛАМА

рефераты НОВОСТИ рефераты
Изменения
Прошла модернизация движка, изменение дизайна и переезд на новый более качественный сервер


рефераты СЧЕТЧИК рефераты

БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА
рефераты © 2010 рефераты