|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Соединения деталей и узлов машинСоединения деталей и узлов машинРЕФЕРАТ На тему: «Соединения деталей и узлов машин» Проверил: _________________ Иванов Л. П. <<_____>>________________2008 г. Выполнил: Кузнецов Н.П. <<_____>>________________2008 г. Оренбург 2008 Содержание 1 Общие сведения о соединениях 3 2 Клеммовые соединения 3 3 Клеевые соединения 4 4 Заклепочные соединения 5 5 Конические соединения 10 6 Клиновые соединения 12 7 Профильные соединения 14 8 Сварные соединения 15 9 Паяные соединения 19 10 Шлицевые соединения 21 11 Штифтовые соединения 25 12 Шпоночные соединения 27 13 Резьба 29 14 Соединения с натягом 34 Список использованной литературы 43 1. Общие сведения о соединениях Общей тенденцией развития соединений является приближение их к целым деталям и удовлетворение условию равнопрочности с соединенными элементами. Иначе мате-риал соединяемых элементов не будет пол-ностью использован. Соединения по признаку возможности разборки делят на неразъемные, ко-торые нельзя разобрать без разрушения или повреждения (заклепочные, сварные), и разъемные, позволяющие повторные сборку и разборку (резьбовые, клиновые, шлицевые и др.). Неразъемные соединения осуществля-ются силами молекулярно-механического сцепления (сварные, паяные, клеевые) или механическими средствами (клепаные, со-единения с натягом, вальцованные). Соединения элементов сосудов и трубо-проводов, содержащих жидкости или газы, должны удовлетворять условиям плотно-сти (герметичности). Для этого контакти-рующие поверхности механических соеди-нений должны быть сжаты давлением, существенно превышающим давление среды. 2. Клеммовые соединения Клеммовыми называют фрикционные соединения деталей с соосными цилиндрическими посадочными поверхностями, в которых требуемое радиальное давление (натяг) и фиксация за счет сил трения создаются путем деформации изгиба ох-ватывающей детали затянутыми болтами (в соответстивии с рисунком 1). Рисунок 1 - Клеммовые соединения Эти соединения применяют для пере-дачи вращающего момента и осевой силы между валами, осями и призма-тическими деталями (рычагами, щеками сборных коленчатых валов, частями уста-новочных колец и т. п.). При проектировании соединения обычно требуется определить силу затяжки, обес-печивающую взаимную фиксацию деталей и передачу требуемого вращающего мо-мента, а также оценить прочность болта (болтов) и охватывающей детали (клем-мы). В приближенном расчете можно принять, что контактные напряжения от затяжки равномерно распределены по по-верхности контакта (как в соединении с натягом). Тогда средние контактные на-пряжения qв связаны со сдвигающей нагрузкой Q соотношением Если соединение имеет п болтов (в од-ном или двух рядах, см. рис. 5, б), затянутых силой Fо, то условие равновесия клеммы (рис. 5, в) имеет вид пFо=qld. Учитывая равенство и последнее соотношение, получим Диаметр резьбы болта для обеспечения такой силы затяжки где [уP] - допускаемое напряжение для материалов болта. Оценку прочности клеммы можно выполнить путем расчета методом конечных элементов или по теории колец. 3. Клеевые соединения Клеевые соединения - это соединения неметаллическим веществом посредством поверхностного схватывания (адгезии) и внутренней межмолекулярной связи (ко-гезии) в клеящем слое. Достоинствами этих соединений являют-ся: возможность соединения деталей из разнородных материалов, соединения тон-ких листов, пониженная концентрация на-пряжений и хорошее сопротивление уста-лости, возможность обеспечения герметич-ности, уменьшенная масса, возможность получения гладкой поверхности изделия. Применяемые в машиностроении клеи подразделяют на термореактивные - эпо-ксидные, полиэфирные, фенолоформаль-дегидные, полиуретановые; термоплас-тичные на основе полиэтилена, поливенил-хлорида; эластомеры на основе каучуков. При нормальной температуре 18?20 °С предел прочности на сдвиг большинства клеев 10?20 МПа (предельные достигае-мые значения 30?50 МПа); при 200?250 °С снижается на 30?50 %. Клеи на основе кремнийорганических соединений и неорганических полимеров (в частности, ВК2) обладают теплостой-костью до 700?1000 °С, но меньшей проч-ностью и повышенной хрупкостью. Наряду с жидкими клеями применяют клеи в виде пленок, которые вкладывают между соединяемыми деталями, а потом нагревают и сжимают. Основным недостатком клеевых соедине-ний является их слабая работа на неравно-мерный отрыв, что накладывает требова-ния на конструкцию соединений. Наиболее широко применяют соединения внахлестку, работающие на сдвиг. Стыковые соедине-ния для обеспечения прочности выполняют по косому срезу (на «ус») или предусмат-ривают накладки. При увеличении толщи-ны клеевого слоя прочность падает. Опти-мальная толщина слоя 0,05?0,15 мм. Успешно применяют клей для повыше-ния прочности сопряжения зубчатых колес с валами и зубчатых венцов со ступицами. Клей начинают использо-вать при установке наружных колец под-шипников качения в корпус, для уплотне-ния и стопорения резьбовых соединений, для присоединения пластинок режущего инструмента. Для особопрочных соединений, испы-тывающих произвольную нагрузку, вклю-чая неравномерный отрыв, и вибрацион-ную нагрузку, применяют комбинирован-ные соединения, клеесварные и клеезакле-почные, клеерезьбовые. Комбинированные соединения обеспе-чивают равнопрочность с целыми листа-ми и широко применяются в ответствен-ных машинах (в частности, в тяжелых самолетах соединяемые поверхности по несколько сот квадратных метров). Клеесварные соединения выполняют обычно в виде сочетания клеевых и то-чечных сварных швов. Толстые листы соединяют двухрядными швами с шахмат-ным расположением точек. Точечную сварку преимущественно производят по жидкому (эпоксидному) клею. Клеезаклепочные соединения еще прочнее клеесварных. Их обычно выпол-няют по незатвержденному (фенольному БФ-1, БФ-2 и др.) клею, что исключает необходимость сдавливания соединяемых листов при склеивании. Успешно применяют клееболтовые со-единения. Рассеяние энергии в клеевых соедине-ниях на 20?30 % больше, чем в обычных фрикционных. 4. Заклепочные соединения Заклепка (в соответстивии с рисунком 2) представляет со-бой стержень круглого сечения с головка-ми на концах, одну из которых, называе-мую закладной, выполняют на заготовке заранее, а вторую, называемую замыкаю-щей, формируют при клепке. Заклепки стягивают соединяемые детали, в результате чего часть или вся внешняя продольная нагруз-ка на соединения передается силами тре-ния на поверхности стыка. Рисунок 2 - Заклёпка с полукруглыми головками и простейшее заклёпочное соединение Заклепочные соединения разделяют на: 1) силовые (иначе называемые прочны-ми соединениями), используемые преиму-щественно в металлических конструкциях машин, в строительных сооружениях; 2) силовые плотные (иначе называемые плотнопрочными соединениями), исполь-зуемые в котлах и трубах, работающих под давлением. Плотность также можно обеспечить с помощью клея. Преимуществами заклепочных соедине-ний являются стабильность и контролируе-мость качества. Недостатки - повышен-ный расход металла и высокая стоимость, неудобные конструктивные формы в связи с необходимостью наложения одного листа на другой или применения специальных накладок. В настоящее время заклепочные соединения в большинстве областей вытес-нены сварными и этот процесс продол-жается. Область практического применения за-клепочных соединений ограничивается сле-дующими случаями: 1) соединения, в которых нагрев при сварке недопустим из-за опасности отпуска термообработанных деталей или коробле-ния окончательно обработанных точных деталей; 2) соединения несвариваемых материа-лов; 3) соединения в самолетах, например в пассажирском самолете применяют до 2,5 миллионов заклепок; 4) соединения в автомобилестроении для рам грузовых машин. Заклепки изготовляют из прутков на вы-садочных автоматах. Клепку стальными заклепками диамет-ром до 8?10 мм, а также заклепками из латуни, меди и легких сплавов всех диа-метров производят холодным способом, а остальных заклепок - горячим спосо-бом. Материал заклепок должен быть доста-точно пластичным для обеспечения воз-можности формирования головок и одно-родным с материалом соединяемых дета-лей во избежание электрохимической коррозии. Стальные заклепки обычно изго-товляют из сталей Ст2, Ст3, 09Г2 и др. Государственными стандартами пред-усмотрены следующие виды заклепок. Заклепки со сплошным стерж-нем: с полукруглой головкой (ГОСТ 10299-80* и ГОСТ 14797-85, рисунок 3, а), имеющие основное применение в силовых и плотных швах; с плоской головкой (ГОСТ 14801-85, в соответстивии с рисунком 3, б), предна-значенные для работы в коррозионных средах; с потайной головкой (ГОСТ10300-80*, ГОСТ 14798-85, в соответстивии с рисунком 3, в), применяемые при недопустимости высту-пающих частей, в частности в самоле-тах; с полупотайной головкой для соеди-нения тонких листов. Заклепки полупустотелые (ГОСТ 12641-80*, ГОСТ 12643-80, г, д, е) и пустотелые (ГОСТ 12638-80* - ГОСТ 12640-80*, в соответстивии с рисунком 3, ж, з, и) применяют для соединения тонких листов и неметаллических деталей, не допускающих больших нагрузок. Рисунок 3 - Стандартные стальные заклёпки Для увеличения ресурса заклепочных соединений создают радиальный натяг, ре-сурс при этом увеличивается в 2?4 раза. Для крепления лопаток некоторых паро-вых и газовых турбин применяют заклепки, устанавливаемые под развертку и рабо-тающие в основном на сдвиг. Наиболее отработаны конструкции, ти-паж и технология заклепочных соединений в авиационной промышленности. Кроме традиционных заклепок приме-няют: 1) заклепки из стержней с одно-временным расклепыванием обеих головок и образованием гаран-тированного натяга по цилиндрической по-верхности; 2) заклепки с потайной головкой и компенсатором - местной выпук-лостью на головке, деформируемой приклепке и уплотняющей контакт головки; 3) заклепки для швов с односто-ронним подходом и с сердечни-ком, который при осевом пере-мещении распирает заклепку, образуя замыкающую головку, а потом обрывается и фрезеруется для обеспечения гладкой поверхности; Рисунок 4 - Стержневые заклёпки для односторонней клёпки 4) взрывная заклепка того же на-значения, у которой замыкающая головка образуется в результате взрыва вещества, заложенного в отверстие заклепки; взрыв вызывается нагревом закладной головки и стержня; 5) болт-заклепка в виде стержня, устанавливаемого с натягом, и высокой шайбы; при установке болта гайку обжимают на стержне, имеющем в этом месте кольцевые канавки; потом хвос-товую часть стержня обрывают; 6) заклепка с большим сопро-тивлением сдвигу в виде твердой пустотелой заклепки с потайной головкой, притягиваемой винтом. Заклепочные соединения по конструкции разделяют на соединения внахлестку (в соответстивии с рисунком 5, а), соединения с одной накладкой (в соответстивии с рисунком 5, б) и соединения с двумя наклад-ками (в соответстивии с рисунком 5, в). Рисунок 5 - Основные типы заклёпочных соединений Заклепочные соединения применяют так-же для деталей машин общего назначения, например для крепления венцов зубчатых колес к ступицам, лопаток в турбинах, противовесов коленчатых валов, тормоз-ных лент и обкладок, для соединения дета-лей рам и колес автомобилей и т. д. При конструировании рекомендуется придерживаться следующих правил: 1) в элементах, работающих на растя-жение или сжатие для уменьшения их из-гиба, заклепки следует располагать воз-можно ближе к оси, проходящей через центр массы сечений, или симметрично от-носительно этой оси; 2) в каждом соединении для устранения возможности относительного поворота со-единяемых деталей желательно использо-вать не менее двух заклепок; 3) заклепки по возможности следует размещать таким образом, чтобы соеди-няемые элементы ослаблялись меньше и их материал использовался более полно, т. е. следует предпочитать шахматное располо-жение рядному. Расчет заклепочных соединений. В со-ответствии с обычными условиями работы заклепочных соединений основными на-грузками для них являются продольные силы, стремящиеся сдвинуть соединяемые детали одну относительно другой. В плотном и точном соединениях необхо-димо, чтобы вся внешняя нагрузка во из-бежание местных сдвигов воспринималась силами трения. Расчет заклепок в соединении, находя-щемся под действием продольной нагруз-ки, сводится по форме к расчету их на срез. Трение в стыке учитывают при выборе допускаемых напряжений среза. При цен-тральном действии нагрузки предполага-ется равномерное распределение сил между заклепками. В заклепочном соединении допустимая нагрузка, отнесенная к одной заклепке,
где d - диаметр стержня заклепки; [ф]ср - условное допускаемое напряжение за-клепки на срез; i - число срезов. При центрально действующей нагрузке F необходимое число заклепок z=F/F1. Заклепки на смятие в односрезном или двухсрезном силовом соединении проверяют по формуле где s - толщина стенки соединяемых де-талей. Проверка на смятие плотных соединений не нужна, так как в них вся продольная нагрузка воспринимается силами трения в стыке. Соединяемые элементы проверяют на прочность в сечениях, ослабленных заклеп-ками: Допускаемое напряжение для соедине-ний стальных деталей заклепками из ста-лей Ст2 и Ст3 при расчете по основным нагрузкам: на срез заклепок [ф]ср=140 МПа и на смятие [у]см=280?320 МПа, на растяжение соединяемых элементов из стали Ст3 [у]р=160 МПа. При холодной клепке допускаемые на-пряжения в заклепках снижают на 30 %. Для элементов соединений с пробитыми и нерассверленными отверстиями допус-каемые напряжения снижают на 30 %. Если соединение работает при редких знакопеременных нагрузках, допускаемые напряжения понижают умножением на коэффициент где Fmin и Fmax - наименьшая и наиболь-шая по абсолютной величине силы, взятые со своими знаками. Для соединения эле-ментов из низкоуглеродистых сталей а=1, b=0,3, а для соединений из среднеуглеро-дистых сталей а = 1,2, b= 0,8. Потребная площадь элементов, рабо-тающих на растяжение под действием силы F, где ц=(P-d)/P коэффициент прочности шва, величина которого обычно колеблется в пределах от 0,6 до 0,85; Р - шаг распо-ложения заклепок. При проектном расчете значением ц за-даются, а потом производят проверочный расчет. В групповых заклепочных соединениях, подверженных сложному напряженному состоянию, силы на одну заклепку опре-деляются, как в резьбовых соединениях. 5. Конические соединения Конические соединения представляют собой разновидность фрик-ционных соединений, используемых для пе-редачи вращающего момента между дета-лями с соосными посадочными поверхностями. Обычно такие соединения применяют для закрепления деталей на кон-цах валов. Натяг и контактные напряжения в конических соединениях (в отличие от цилин-дрических соединений) создаются затяж-кой. Уравнение равновесия при равномерном распределении по длине контактных напря-жений q и касательных напряжений фf от трения (сцепления) имеет вид где r1 и r2 - соответственно минималь-ный и максимальный радиусы конического участка вала в сопряжении. Если учесть, что dz=dr·ctgб. то после интегрирования и несложных преобразо-ваний получим где F0 - сила затяжки соединения; dm и l - средний диаметр и длина соединения; б - угол наклона образующей конуса к оси вала; f - коэффициент трения пары вал - ступица. Из соотношения видно, что с увеличением угла б (конусности) необ-ходимо увеличивать затяжку соединения для сохранения уровня контактных на-пряжений. Обычно из технологических соображе-ний применяют небольшую конусность. По ГОСТ 21081-75 конусность что соответствует б?2°52' (d1 и d2 - минимальный и максимальный диаметры вала в соединении). При большей конусности на несущую способность соединений существенное влияние оказывают погрешности углов конуса вала и ступицы (втулки), т. е. в конических соединениях отношение f/tgб<1. При малом угле б можно при-нять, что диаметр вала d?dm. Вращающий момент, передаваемый сое-динением. Откуда требуемая минимальная сила затяжки соединения где k=1,3?1,5 - коэффициент запаса сцепления;. fпр - приведенный коэффициент трения, Из формулы следует, что на пере-даваемый вращающий момент влияют сила предварительной затяжки, средний диаметр и состояние поверхностей кон-такта. Максимальная сила затяжки устанав-ливается из условий прочности (подобно максимальному расчетному натягу). Так как конусность невелика, то максималь-ная сила затяжки (tgб=0,5K=0,05) где D - наружный диаметр ступицы (втулки). Затяжку соединений контролируют ди-намометрическим ключом или по осе-вому перемещению ступицы. В процессе работы возможно ослабле-ние затяжки из-за обмятия поверхностей контакта (особенно в соединении со шпон-кой). Для фиксации осевого положения иног-да используют бурты на валах. 6. Клиновые соединения Клиновым называют разъемное соединение, затягиваемое или регулируемое с помощью клина. Типичным примером клинового соеди-нения является соединение стержня со втулкой. Со-единение обычно затягивают, забивая клин или перемещая его посредством винта. Рисунок 6 - Клиновые соединения стержня со втулкой Достоинства клинового соединения: 1) бы-строта сборки и разборки; 2) возмжность создания больших сил затяжки и возможность восприятия больших нагрузок; 3) относитель-ная простота конструкции. По назначению клиновые соединения раз-деляют на: 1) силовые, предназначенные для прочного скрепления деталей; 2) установочные, предназначенные для установки и регулирова-ния требуемого взаимного положения деталей. Силовые соединения применяют для постоян-ного скрепления при редких разборках в маши-нах и при частой сборке и разборке в приспособ-лениях для обработки деталей на станках и в сборных литейных моделях. Большинство силовых клиновых соединений выполняют с предварительным натягом: клином создается внутренняя сила, действующая и при отсутствии внешней нагрузки. Установочные клиновые соединения обычно выполняют без предварительного натяга с силовым замыкани-ем, преимущественно нагрузкой от сил тяжести. В клиновых соединениях применяют почти исключительно односкосные клинья. Рабочие по-верхности клиньев выполняют цилиндрически-ми или плоскими с фасками. В крепежных клиновых соединениях уклоны выбирают из условия самоторможения равными 1:100, 1:50, в часто затягиваемых и установоч-ных клиньях - 1:20, 1: 10, 1:4. Рисунок 7 - Расчётные схемы клинового соединения Примерные соотношения размеров клиньев в соединении стержня диаметром d со втулкой: толщина клина (из условия равнопрочности стержня на растяжение и на смятие клином) b=(0,25?0,3)d; высота сечения клина h?2,5b. При забивании и выбивании клина (в соответстивии с рисунком 7), а суммарные силы на рабочих гранях кли-на наклонены к нормалям на угол трения ц в сто-рону, обратную перемещению клина. Обозначим силу забивания клина через F, а силу, развиваемую на стержне,- через Q. В устано-вочных клиновых соединениях она равна полез-ной внешней нагрузке Q=Qвн. В соединениях с предварительным натягом по условию, что после приложения внешней нагрузки в соедине-нии сохраняется натяг, расчетная сила в стер-жне Q=(1,25?1,5)Qвн. Согласно условию равновесия клина в направлении его оси мож-но записать F=Q[tg(б+ц)+tgц]. Сила выбивания клина Самоторможение определяется условием, что сила F1 больше или равна нулю. Полагая в пре-дыдущем уравнении F1?0, получаем , отсюда б?2ц. Таким образом, угол односкосного клина или сумма углов сторон (угол заострения) дву-скосного клина должны быть меньше двойного угла трения на рабочих гранях. Расчетный коэффициент трения обычно принимают равным 0,1; тогда ц?5°45'. Однако при пластичном смазочном материале и чистых поверхностях коэффициент трения может сни-жаться до 0,04. Наоборот, при сухих обезжи-ренных поверхностях коэффициент трения возрастает до 0,2?0,3 и более. В крепежных клиновых соединениях обеспечивается значи-тельный запас самоторможения. При уклонах, меньших 1:25, и постоянной нагрузке нет не-обходимости в специальных стопорных уст-ройствах, предохраняющих соединения от самопроизвольного ослабления. В остальных случаях клинья специально закрепляют. При расчёте клина предпологают, что давление по поверхности контакта распределяется равномерно (рисунок 7, б). В действительности распределение давления особенно при больших нагрузках более благоприятно для прочности клина на изгиб (рисунок 7, в). Дополнительно проверяют поверхность кон-такта клина и втулки на смятие, хвостовую часть стержня на срез, а также прочность втул-ки как толстостенной трубы, подверженной внутреннему давлению. 7. Профильные соединения Профильными назы-вают соединения, в которых ступица (втул-ка) насаживается на фасонную поверх-ность вала и таким образом обеспечи-вается жесткое фиксирование деталей в ок-ружном направлении и передача враще-ния. В качестве примера показано соединение на квадрате со скруг-ленными углами (для снижения концент-рации напряжений); применяются также соединения эллиптического и треугольного сечений. Рисунок 8 - Профильное соединение По сравнению со шпоночными и шлице-выми эти соединения имеют небольшую концентрацию напряжений и более высо-кую точность центрирования. Однако сложность изготовления профильной по-верхности ограничивает области примене-ния соединений. Расчет соединений. Профильные соеди-нения рассчитывают на смятие. Условие прочности по допускаемым напряжениям для соединения имеет обычный вид: где l - длина соединения, обычно l=(1?2)d; b - ширина прямолинейной части грани; [усм]- допускаемое напряжение смятия, для термообработанных поверхностей [усм]=100?140 МПа. 8. Сварные соединения Сварные соединения - это не-разъемные соединения, основанные на ис-пользовании сил молекулярного сцепления и получаемые путем местного нагрева де-талей до расплавленного состояния (свар-ка плавлением электродуговая, электро-шлаковая и др.) или до тестообразного со-стояния, но с применением механической силы (контактная сварка). Дуговая сварка металлическим электродом осуществляется электрической дугой между электродом и изделием. Выделяе-мое тепло оплавляет соединяемые детали и расплавляет электрод (или присадочный материал), который дает дополнительный металл для формирования шва. Дуговая электрическая сварка является крупным русским изобретением (Н. И. Бенардос, 1882 г., и Н. Г. Славянов, 1888 г.). Основным способом механизированной дуговой сварки, обеспечивающим ысокое качество шва, производительность и экономичность процесса, является автоматическая сварка под слоем флюса. Особенно эффективно применение автоматической сварки в серийном производстве и для конструкций с длинными швами. Для конструкций с коротки-ми разбросанными швами применяют полу-автоматическую шланговую свар-ку, а при малом объеме сварочных работ- ручную дуговую сварку. Для сварки металлических деталей малой толщины, деталей из высоколегированных ста-лей, цветных металлов и сплавов получили рас-пространение дуговая сварка в среде защитных газов, сварка в углекислом газе и аргонодуговая сварка. Электрошлаковая сварка так же, как и дуговая, представляет собой сварку плав-лением; при прохождении тока через шлаковую ванну от электрода к изделию выделяется теп-лота, расплавляющая основной и присадочный материалы. Электрошлаковая сварка предназ-начена для соединения деталей толщиной от30 мм до 1?2 м. Электрошлаковая сварка поз-воляет заменять сложные тяжелые цельноли-тые и цельнокованые конструкции сварными из поковок, отливок или листов, позволяет фор-мировать переходные поверхности (галтели), что значительно облегчает и удешевляет произ-водство. Электрошлаковую сварку применяют, в частности, для чугунных отливок. Контактная сварка основана на разогреве стыка теплотой, выделяющейся при пропускании через него электрического тока, и сдавливании деталей. Контактную сварку при-меняют преимущественно в серийном и массо-вом производствах. При сварке трением используется теп-лота, выделяемая в процессе относительного движения свариваемых деталей, преимущест-венно тел вращения. Применяют также специальные виды сварки: 1) диффузионную, позволяющую соединять разнородные материалы и обеспечивающую ми-нимальное изменение свойств соединения по сравнению со свойствами основных материалов; 2) электронно-лучевую (весьма экономически выгодную) и лазерную, обеспечивающие узкую зону проплавления, малые деформации и поз-воляющие сварку закаленных деталей; 3) радиочастотную, преимущественно приме-няемую для тонких труб и весьма производи-тельную; 4) ультразвуковую в приборостроении для де-талей малой толщины из однородных и разно-родных металлов; 5) сварку взрывом, преимущественно для по-крытий. Существенные перспективы, в частности для повышения производительности сварки и резки, дает применение плазменного процесса. Весьма эффективны наплавки, повышаю-щие износостойкость в 3?10 раз. Возможна наплавка слоя практически любого металла или сплава на заготовку из обычной конструкцион-ной стали. Широко применяют восстановительные на-плавки, но еще недостаточно применяют наплав-ки, выполняемые в процессе изготовления, хотя они наиболее выгодны. Успешно наплавляют клапаны автомобильных двигателей и дизелей, лемехи, бандажи железнодорожных колес, про-катные валки. Разработана сварка пластмасс газовыми теплоносителями, нагревательными элементами ТВЧ., ультразвуком, трением, с помощью хими-ческих реакций. Сварные соединения по взаимному рас-положению соединяемых элементов можно разделить на следующие группы: 1) Соединения стыковые. Соединяемые элементы являются продолжением один другого, сварку производят по торцам. 2) Соединения нахлесточные. Боковые поверхности соединяемых элементов час-тично перекрывают одна другую. 3) Соединения тавровые. Соединяемые элементы перпендикулярны или реже на-клонны один к другому. Один элемент торцом приваривается к боковой поверх-ности другого. 4) Соединения угловые. Соединяемые элементы перпендикулярны или наклонны один к другому и привариваются по кром-кам. Применение стыковых соединений, как наиболее близких к целым деталям, рас-ширяется, а применение нахлесточных- сокращается. Применение сварных конструкций обес-печивает существенную экономию металла по сравнению с клепаными и литыми. Экономия металла по сравнению с клепаными конструкциями получается в основном ввиду: а) полного использования рабочих сече-ний соединяемых элементов без ослабле-ния их отверстиями для заклепок; б) возможности непосредственного со-единения элементов без вспомогательных деталей (накладок). Общая экономия металла составляет в среднем 15?20 %. Экономия металла по сравнению с ли-тыми конструкциями достигается благо-даря: а) более высоким механическим свойст-вам материалов и меньшим остаточным напряжениям; б) более тонким стенкам; в) меньшим припускам на механиче-скую обработку. Сварные стальные конструкции легче чу-гунных литых на величины до 50%, а стальных литых - до 30 %. Для сварки характерны высокие эконо-мические показатели: малая трудоемкость процесса, относительно низкая стоимость оборудования, возможность автоматиза-ции и т. д. Относительно низкая стоимость сварочного оборудования определяется тем, что оно не связано с использованием больших сил (как кузнечно-прессовое обо-рудование) и с необходимостью плавления большого количества металла (как литей-ное производство). Недостатком сварки является неста-бильность качества шва, зависящая от квалификации сварщика. Этот недостаток в значительной степени устраняется приме-нением автоматической сварки. Сварка является основным видом полу-чения соединений металлических строи-тельных конструкций. Наиболее прогрес-сивно изготовление металлических конст-рукций на заводах сваркой, а их соедине-ние на строительных объектах высоко-прочными болтами. Сварка позволяет удешевлять и совер-шенствовать конструкции деталей, полу-ченных разными заготовительными опера-циями, поковок, проката, отливок и дета-лей из разных материалов. Широкое применение находят сварные конструкции из гнутых или штампованных элементов. Эти конструкции допускают ра-циональные формы при малой трудоем-кости. Общим исходным условием проектиро-вания сварных соединений является ус-ловие равно прочности шва и соединяемых элементов. Расчет сварных конструкций. Прочность сварных соедине-ний при переменной нагрузке. Сварные соединения, равнопрочные при статических нагрузках соединяемым эле-ментам, при переменных нагрузках оказы-ваются относительно слабее. Это объясняется: 1) концентрацией напряжений (связанной с геометрией стыка, сварочными дефектами, а для фланго-вых и косых угловых швов - совместной работой с соединяемыми элементами); 2) остаточными напряжениями; в) литей-ной структурой шва, изменением струк-туры металла около шва и выгоранием легирующих компонентов. Наибольшим сопротивлением перемен-ным нагрузкам обладают стыковые соеди-нения, особенно при снятых механической обработкой утолщениях. Прочность сварных соединений при действии переменных нагрузок сильно за-висит от качества швов. Например, при наличии в стыковых швах даже незна-чительного непровара прочность снижает-ся на 50 %. Такое же снижение получается от сварки электродами с тонкими покры-тиями. Большое значение имеет конструкция швов. Например, прочность при перемен-ных нагрузках тавровых соединений со скосами кромок в связи с меньшей кон-центрацией напряжений в 1,5 раза выше, чем без разделки кромок. От постановки накладок для усиления стыковых соедине-ний прочность при переменных нагрузках, как правило, не только не увеличивается, но, наоборот, уменьшается в связи с появ-лением источников резкой концентрации напряжений. Следует избегать совмещения сварных швов с местами концентрации напряжений от формы. Следует обеспечивать равно-мерную толщину швов, в частности исклю-чать большие скопления наплавленного металла в местах пересечения швов. Следует так располагать швы, чтобы было удобно их сваривать и контроли-ровать. Кардинальным средством повышения прочности сварных соединений при пере-менных нагрузках является наклеп дробью и чеканка. В опытах на сварных лабораторных образцах дробеструйной обработкой уда-валось повысить прочность более чем в 1,5 раза и даже довести прочность до прочности целых образцов; прочность соединений электрошлаковой сваркой уда-валось повысить в 2 раза. Выбор допускаемых напряже-ний. Допускаемые напряжения в сварных швах при статической нагрузке задаются в долях от допускаемого напряжения ос-новного металла соединяемых элементов на растяжение в зависимости от способа сварки. Допускаемые напряжения основного ме-талла в металлических строительных и крановых конструкциях (в соответствии со «Строительными нормами и правилами» ) определяют по зависимости где R - расчетное сопротивление разру-шению (R=0,9уТ для низкоуглеродистой и R=0,85уТ для низколегированной ста-ли); m - коэффициент условий работы, в большинстве случаев равный 0,9; при повышенной податливости элементов и в некоторых других случаях т=0,8; kH- - коэффициент надежности, обычно kH=1?1,2, для подкрановых балок при тяжелом режиме kH=1,3?1,5. Обычно = уТ/(1,35?1,6) для углеродистых и = уТ/(1,5?1,7) для легированных сталей. В строительных конструкциях при пе-ременных нагрузках расчетные сопротив-ления или допускаемое напряжение умно-жают на коэффициент г=с/(а-br), если наибольшее напряжение растягивающее, или на коэффициент г=с/(а-br), если наибольшее напряжение сжимающее, где r=уmin/уmax характеристика цикла, а, b, с - коэффициенты. Расчет на сопротивление усталости машиностроительных свар-ных конструкций можно прово-дить по основному металлу вблизи шва, если обеспечена статическая равнопроч-ность со швами. Расчет на надежность сварных соединений. На основании отечественных и зарубежных исследований, содержащих диапазон рас-сеяния предела выносливости сварных соединений: стыковое соединение, сварка автоматическая и полуавтомати-ческая 0,03; то же, сварка ручная 0,05; нахлесточное соединение 0,06; сварные двутавровые балки 0,05; сварные короб-чатые балки 0,09. Окалина может служить са-мостоятельным источником вариации пре-дела выносливости с коэффициентом 0,06. Эти коэффициенты должны квадратически суммироваться с коэффициентом вариации для деталей одной плавки без сварного шва и коэффициентом по плавкам. 9. Паяные соединения Паяные соединения - это неразъемные соединения, обеспечиваемые силами моле-кулярного взаимодействия между соеди-няемыми деталями иприпоем. Припой- - это сплав или металл, вводимый в расплав-ленном состоянии в зазор между соединяе-мыми деталями и имеющий более низкую температуру плавления, чем соединяемые детали. Отличие пайки от сварки - отсут-ствие расплавления или высокотемпера-турного нагрева соединяемых деталей. Связь в паяном шве основана на: растворении металла деталей в расплав-ленном припое; взаимной диффузии элементов припоя и металла соединяемых деталей; бездиффузионной атомной связи. Прочность паяного шва существенно выше, чем припоя, в связи с растворением в слое материала деталей и в связи с тем, что слой находится в стесненном напря-женном состоянии между соединяемыми деталями. Пайкой соединяют однородные и разно-родные материалы: черные и цветные ме-таллы, сплавы, керамику, стекло и т. д. Основные паяные соединения: внахлест-ку (ПН-l?ПН-6, включая телескопиче-ские ПН-4?ПН-6), встык (ПВ-l, ПВ-2), вскос (ПВ-3, ПВ-4), втавр (ПТ-1?ПТ-4), соприкасающиеся (ПС-l, ПС-2). Преиму-щественное применение имеют соединения внахлестку, как обеспечивающие достаточ-но высокую прочность вплоть до достиже-ния равнопрочности с целыми деталями. Стыковые соединения имеют примене-ние, ограниченное малыми нагрузками, что связано с малыми поверхностями спая. Соединения ступенчатые и вскос (ПВ-3, ПВ-4 с углом не более 30°) способны обес-печивать необходимую прочность, но их применение ограничивается сложностью изготовления. Пайкой соединяют листы, стержни, тру-бы между собой и с плоскими деталямии др. Важную область составляют сотовые паяные конструкции (рисунок 9). Рисунок 9 - Сотовые конструкции Припои должны быть легкоплавкими, хорошо смачивать соединяемые поверх-ности, обладать достаточно высокой проч-ностью, пластичностью, непроницае-мостью. В технике применяют широкую номенклатуру припоев, разделяемую на группы по температуре плавления и по химическому составу. В машиностроении употребительны следую-щие припои. оловянно-свинцовые по ГОСТ 21930-76* -ПОС 61, ПОС 40, ПОС 30, ПОС 10 и др. оловянно-свинцовые сурьмянистые и мало-сурьмянистые по ГОСТ 21930-76* (автомоби-лестроение, соединения цинковых и оцинкован-ных деталей и др.); серебряные, оловянные, оловянно-свинцовые с содержанием серебра до 10 % по ГОСТ 19738-74* (ответственные соединения, требую-шие высокой прочности, коррозионной стой-кости, относительно невысокой температуры плавления, повышенной электропроводности); медно-цинковые сплавы - латуни (для боль-шинства металлических деталей, кроме деталей, подвергаемых ударным и вибрационным нагруз-кам). В процессе пайки для защиты поверхностей от загрязнения и окисления и соответственно для улучшения растекания жидкого припоя при-меняют флюсы. При низкотемпературной пайке применяют в виде флюса канифоль и ее растворы, вазелин, а также более активные флюсы, содержащие органические кислоты (олеиновую, молочную, лимонную) и др. Для повышения активности флюса добавляют фтористые и хлористые соли металлов. Применяют многообразные способы пайки: паяльником с периодическим подогревом или с непрерывным подогревом газом, жидким топли-вом или электрическим подогревом; газопла-менными горелками; электронагревом (преиму-щественно электросопротивлением); в жидких средах; в печах; специальные. Наиболее проста пайка паяльником, наибо-лее производительны пайки в жидких средах и в печах. Расчет паяных соединений проводят по номинальному напряжению в зависимости от предела прочности. Значения предела прочности на срез при пайке наиболее распространенными оловянно-свинцовыми припоями:
Предел прочности спая на растяжение (по опытам с серебряными припоями ПСр40 и ПСр45) для большинства сталей на 30-40 % выше фср, а для особо высоко-легированных сталей выше до 2 и более раз. 10. Шлицевые соединения Шлицевые соединения (в соответстивии с рисунком 10) условно можно рассматривать как многошпоночное, у которого шпонки выполнены как одно целое с валом. Шпоночные и зубчатые соединения служат для закрепления деталей на осях и валах. Такими деталями являются шкивы, зубчатые колеса, муфты, маховики, кулачки и т. д. Рисунок 10 - Детали (а) и шлицевое соединение (б): 1- вал; 2 - втулка (ступица) Соединения обеспе-чивают жесткое фиксирование деталей в окружном направлении и допускают их взаимные осевые перемещения (подвиж-ные соединения). По форме поперечного, сечения разли-чают три типа соединений: прямобочные ГОСТ 1139-80; эвольвентные ГОСТ6033-80; треугольные (изготовляются по отраслевым стандартам). Соединения с прямобочными зубьями распространены в машино-строении. В зависимости от числа зубьев (z=6?20) и их высоты ГОСТ 1139-80 предусматривает три серии соединений для валов с внешним диаметром от 14 до 125 мм. Рисунок 11 - Шлицевые соединения с эвольвентными (а) и треугольными (б) зубьями При переходе от легкой к тяжелой серии при неизменном внутреннем диа-метре зубьев увеличиваются их число, внешний диаметр и, как следствие, на-грузочная способность. Центрирование, т. е. соосное положение соединяемых деталей, осуществляют: по внешнему (в соответстивии с рисунком 11, а) или внутреннему (в соответстивии с рисунком 11, б) диаметру зубьев, а также по боковым поверхностям зубьев. Для первых двух типов центрирования соединения имеют минимальные зазоры по поверхностям диаметров D и d соответ-ственно и ограниченный зазор по боковым сторонам. По нецентрирующему диаметру предусмотрен значительный зазор. При третьем типе центрирования минимальный зазор устанавливают по боковым сторонам зубьев и значительные зазоры по поверх-ностям диаметров D и d. Стандартом предусмотрены три формы исполнения зубьев вала и одна- для впадин втулки. Центрирование по внешнему диаметру зубьев технологически наиболее простое и экономичное, так как центрирующие поверхности допускают точную и произ-водительную обработку. Такое центрирование применяют в основном для неподвижных соединений. Рекомендуемые посадки по ширине b при центрировании по наружному диаметру: F8/f7, F8/f8, F8/js7 и др. Центрирующие по-верхности вала шлифуют, обеспечивая наиболее высокую точность центрирова-ния. Такое центрирование используют обычно в подвижных соединениях: Реко-мендуют следующие посадки по центри-рующему диаметру d: H7/f7, H7/g6, Н7/ js7 и др. Центрирование по боковым сторонам зубьев применяют сравнительно редко, лишь в соединениях, подверженных ревер-сивным динамическим нагрузкам. Оно не обеспечивает соосности вала и ступицы, хотя имеет высокую нагрузочную спо-собность. Рекомендуемые посадки по ширине b: F8/js7, D9/e8. D9/f8 и др. Соединения с эвольвентными шлицами более технологичны, чем прямобочные шлицевые соединения. Для обработки валов с эвольвентными шлицами требуется мень-ший комплект более простого инструмента и используется совершенная технология зубообработки. Соединения имеют более высокую точ-ность и прочность благодаря большей пло-щади контакта, большему числу зубьев и скруглению впадин, снижающему кон-центрацию напряжений. В cвязи с этим области применения соединений непрерыв-но расширяются. Их центрирование выпол-няют обычно по боковым поверхностям зубьев. Рекомендуемые посадки: 7H/7h, 7Н/9r, 7Н/8р - для неподвижных соединений и 9H/9f, 9H/9g, 11H/l0d - для подвиж-ных соединений. В отличие от зубчатых колес угол про-филя (б=30°) увеличен, а высота зуба уменьшена (h=m). По ГОСТ 603З-80 размерный ряд охва-тывает эвольвентные шлицевые соедине-ния с модулями m=0,5?10 мм, наруж-ными диаметрами D =4?500 мм и чис-лами зубьев z=6?82. При использовании прямобочных и эвольвентных соединений для направления осевого перемещения деталей, посаженных на вал (например, зубчатых колес в короб-ках передач), твердость поверхности зубьев повышают до 54-60 HRC для уменьшения изно-са. Соединения с треугольными зубьями применяют преимущественно для неподвижных соединений при тонкостенных втулках, а также в сое-динениях стальных валов со ступицами из легких сплавов, в приборостроении. Они позволяют координировать положение ва-ла и втулки в пределах малых углов. По рекомендации СЭВ (РС 656-66) угол профиля в=60° при номинальных диа-метрах до 60 мм. Кроме таких соеди-нений, в машиностроении по отраслевым стандартам изготовляют соединения с дру-гими углами профиля (72°, 90° и др.) и D=5?75 мм. В быстроходных передачах авиацион-ные и автомобильные коробки передачи т. п. точность центрирования шлицевых соединений часто недостаточна. Для ее по-вышения центрирование осуществляют по вспомогательным поверхностям (коническим, цилиндрическим, а иногда отказываются от применения соединений и колеса изготовляют как одно целое с валом. Рисунок 12 - Центрирования деталей шлицевого соединения по конической и цилиндрической дополнительным поверхностям Проектирование и расчет соединений. Основные размеры шлицевого соединения задают при конструировании вала. Длину соеди-нения принимают не более 1,5D; при большей длине существенно возрастает нерав-номерность распределения нагрузки вдоль зубьев и трудоемкость изготовления. Учитывая, что соединения в машинах выходят из строя преимущественно из-за повреждения рабочих поверхностей зубьев и усталостного разруше-ния шлицевых валов, после проектирова-ния выполняют проверочный расчет зубьев. Рисунок 13 - Расчётная схема зуба шлицевого соединения Условие прочности по допускаемым на-пряжениям смятия имеет вид где dm - средний диаметр соединения; z - -число зубьев; h и l - соответственно высо-та и длина поверхности контакта зубьев; ш - коэффициент, учитывающий нерав-номерное распределение нагрузки между зубьями и вдоль зубьев (ш=0,5?0,7); [усм] - допускаемое напряжение смятия на боковых поверхностях. Для соединения с эвольвентными зубья-ми принимают: [усм] =0,2ув -для неподвижных соединений с химико--термической обработкой зубьев; [усм] =0,lув - то же для подвижных сое-динений. Для соединений с зубьями без химико-термической обработки зна-чения [усм] снижают вдвое. Высота и длина поверхности контакта: для прямобочных зубьев ; ; для эвольвентных зубьев h=m; dm=mz, где m - модуль зубьев. Шлицевым соединениям присуща высо-кая концентрация нагрузки, обусловленная погрешностями изготовле-ния, смещениями осей деталей под нагруз-кой, закручиванием деталей. Лишь в идеально точном соединении при дейст-вии вращающего момента Т нагрузка между зубьями распределена равномерно ; где I - номер зуба. При совместном действии момента и радиальной силы F, нагрузка между зубьями будет распределяться неравно-мерно и В реальных соединениях имеются погрешности в угловом шаге зубьев вала и втулки, а также радиальные зазоры, ко-торые приводят к существенно неравно-мерному распределению нагрузки в ок-ружном направлении и циклическому взаимному смещению деталей в осевом направлении, изнашиванию зубьев и раз-витию контактной коррозии. В приближенном расчете концентрацию нагрузки учитывают общим коэффициен-том ш. Для улучшения распределения нагрузки и повышения долговечности соединений повышают точность изготовления, совершенствуют формы деталей и выполняют ряд других мероприя-тий. 11 Штифтовые соединения Штифтовые соединения применяют при небольших нагрузках преимущественно в приборостроении. Соединяемые детали сопрягаются при этом по переходным посадкам. Рисунок 14 - Штифтовые соединения Для исключения выпадения в процессе работы используют штифты: с насеченными канавками, вальцованные, резьбовые. Часто для этих же целей произ-водят разведение концов штифтов. Рисунок 15 - Штифты (а - гладкие, б - с канавками, в - с резьбовым концом, г - разводной конический) Основные типы штифтов стандартизо-ваны. Их изготовляют из углеродистых сталей 30, 45, 50 и др. По характеру работы штифтовое соеди-нение подобно заклепочному (работает на срез и смятие). Для расчета соединения используют те же зависимости. Условие прочности при срезе радиального штифта, а условие прочности по смятию где Ft - срезающая сила (осевая или окружная); i - число поверхностей среза; Ас=рd2/ 4 - площадь штифта при срезе; Асм=d(D-d1) - площадь поверхности смятия (сжатия); [фc]=70?80 МПа- - допускаемое напряжение при срезе; [усм] =200?300 МПа - допускаемое напряжение при смятии. Срезающая сила при передаче вра-щающего момента Ft=2T/d1. Штифты диаметром d=(0,1?0,15)dв и длиной l=(3?4)dв (dв - диаметр вала) устанавливают по посадке с натягом Н7/r6 в отверстия, совместно просверленные и развернутые при сборке в валу и ступице по стыку посадочных поверхностей. Рисунок 16 - Схемы к расчёту соединений радиальным (а) и осевым (б) штифтами Многоштифтовые соединения этого типа по прочности близки к шлицевым. 12. Шпоночные соединения Соединения двух со-осных цилиндрических деталей для передачи вращения между ними осуществляется с помощью шпонки 1 (в соответстивии с рисунком 17, а), специальной детали, за-кладываемой в пазы соединяемых вала 2 и ступицы 3. Рисунок 17 - Шпоночные соединения В машиностроении применяют не-напряженные (без нагрузки) соеди-нения (с помощью призматических и сег-ментных шпонок (в соответстивии с рисунком 17, б и в), и напряженные соединения (с помощью клиновых шпонок (в соответстивии с рисунком 17, г)). Шпонки этих типов стандартизованы, их размеры выбирают по ГОСТ 23360-78, ГОСТ 24071-80 и ГОСТ 24068-80. Основные достоинства соединений со-стоят в простоте конструкции и возмож-ности жесткой фиксации насаживаемой детали в окружном направлении. Однако соединения трудоемки в изго-товлении, требуют ручной пригонки или подбора. Это ограничивает использование соединений в машинах крупносерийного и массового производства. Не рекомендуется применение соединений для быстровра-щающихся валов ответственного назначе-ния из-за сложности обеспечения концент-ричной посадки сопрягаемых деталей. Шпоночные соединения применяют преимущественно в тех случаях, когда посадку с натягом не удается реализовать по условиям прочности или технологическим возможностям. Соединения призматическими шпонка-ми. Применяются в конструкциях наиболее широко, так как просты в изготовлении и имеют сравнительно небольшую глубину врезания в вал. Шпонки имеют прямоугольное сечение с отношением высоты к ширине от 1 (для валов диаметром до 22 мм) до 0,5 (для валов больших диа-метров). Их устанавливают с натягом в пазы валов. Рабочими у шпонок являют-ся боковые узкие грани. В радиальном направлении предусмотрен зазор, В ответ-ственных соединениях сопряжение дна па-за с боковыми сторонами выполняют по радиусу для снижения концентрации напряжений. Материал шпонок - чистотянутая сталь 45 или сталь Ст6 с пределом прочности ув =590?750 МПа. Если принять для упрощения, что напря-жения в зоне контакта распределены рав-номерно, и плечо рав-нодействующей этих напряжений равно 0,5d (где d - диаметр вала), то средние контактные напряжения (напряжения смя-тия, вызывающие смятие рабочих граней) где Т - вращающий момент; lр - рабочая длина шпонки; t2=0,4h - -глубина врезания шпонки в ступицу; - допускаемое напряжение на смя-тие. На практике сечение шпонки подбирают по ГОСТ 23360-78 в зависимости от диа-метра вала, а длину l шпонки назначают на 5-10 мм меньше длины ступицы. Затем по формуле (1) оценивают прочность соединения на смятие или вычисляют пре-дельный момент, соответствующий напря-жению . Рабочая длина шпонки lp=l-b может быть определена из очевидного соотношения. . Проверку прочности шпонок на срез обычно не производят, так как это условие удовлетворяется при использовании стан-дартных сечений шпонок и рекомендуемых значений . Если условие прочности не выпол-няется, то соединение образуют с помощью двух шпонок, установленных под углом 120 или 180°. Соединения характеризуются сущест-венно неравномерным распределением нагрузки и напряжений как по высоте сечения, так и по длине шпонки. Это вызывает упругопласти-ческое смятие рабочих граней пазов и шпонки, закручивание ее, особенно при на-личии зазора между валом и ступицей. Поэтому длину шпоночных соединений ог-раничивают (l?1,5d), а посадку зубча-тых колес, шкивов, полумуфт и других деталей на валы осуществляют с натягом (посадки Н7/р6; Н7/r6; H7/s7; H7/k6 и т. п.). В этом случае шпоночные соединения по существу выключаются из работы и оказы-ваются резервными, а шпонки обеспечи-вают лишь жесткую фиксацию в окружном направлении насаживаемых деталей. Соединения сегментными шпонками. Сегментные шпонки имеют более глубокую посадку и не пере-кашиваются под нагрузкой, они не требуют ручной пригонки. Однако глубокий паз су-щественно ослабляет вал, поэтому сег-ментные шпонки используют преимущест-венно для закрепления деталей на мало-нагруженных участках вала (например, на входных или выходных хвостовиках валов). Расчет соединений с сегментными шпон-ками также производят по формуле, принимая t2=h-t1. До-пускаемые напряжения смятия при постоянной нагрузке в соединении сталь-ного вала и шпонки из чистотянутой стали (ув=500?600 МПа) в зависимости от материала ступицы можно выбирать следующими: 150-180 МПа - для ступиц из стали; 80-100 МПа - из чугуна и алю-миния; 15-25 МПа - из текстолита и древопластика. Большие значения принимают при лег-ком режиме работы (переменная нагрузка не больше 5% от постоянной), а мень-шие - при тяжелых условиях эксплуатации (нагрузка знакопеременная с ударами). 13. Резьба Резьба - выступы, образованные на основной поверхности винтов или гаек и расположенные по винтовой линии. Резьбовое соединение образуется двумя (реже тремя) деталями. У одной из них на наружной, а у другой на внутренней поверхности имеются расположенные по винтовой поверхности выступы - соответственно наружная и внутренняя резьба (в соответстивии с рисунком 18). По форме основной поверхности различают цилиндрические и конические резьбы. Наиболее распространена цилиндрическая резьба. Коническую резьбу применяют для плотных соединений труб, масленок, пробок и т. п. Профиль резьбы -- контур сечения резьбы в плоскости, проходящей через ось основной поверхности. По форме профиля различают треугольные, прямоугольные, тра-пецеидальные, круглые и другие резьбы. По направлению винтовой линии различают правую и левую резьбы. У правой резьбы винтовая линия идет слева направо и вверх, у левой -- справа налево и вверх. Наиболее рас-пространена правая резьба. Левую резьбу применяют только в специальных случаях. Если витки резьбы расположены по двум или нескольким параллельным вин-товым линиям, то они образуют многозаходную резьбу. По числу захода раз-личают однозаходную, двухзаходную и т. д. резьбы. Наиболее распространена однозаходная резьба. Все крепежные ре-зьбы однозаходные. Многозаходные резь-бы применяются преимущественно в винтовых механизмах. Число заходов больше трех применяют редко. Рисунок 18 - Резьбовое соединение с метрической резьбой Методы изготовления резьбы 1. Нарезкой вручную мет-чиками или плашками. Способ малопроизводительный. Его применяют в индивидуальном производстве и при ремонтных работах. 2. Нарезкой на токарно-винторезных или специальных станках. 3. Фрезерованием на специальных резьбофрезерных станках. Применяют для нарезки винтов больших диаметров с повышенными требованиями к точности резьбы (ходовые и грузовые винты, резьбы на валах и т.д.). 4. Накаткой на специальных резьбонакатных станках-автоматах. Этим высокопроизводительным и дешёвым способом изготовляют большинство резьб стандартных крепёжных деталей (болты, винты и т.д.). Накатка существенно упрочняет резьбовые детали. 5. Литьём на деталях из стекла, пластмассы, металлокерамики и др. 6. Выдавливанием на тонкостенных давленных и штампованных изделиях из жести, пластмассы и т.д. Наибольшее распространение в машино-- и приборостроении имеет метрическая резьба по ГОСТ 8724-81 с крупными мелким шагами. Она обозна-чается буквой М и цифрами, показывающими наружный диаметр резь-бы (например, резьба, имеющая d=24 мм, обозначается М24), в обозначении резьбы с мелким шагом, кроме диаметра, в форме сомножителя указывается ее шаг (например, М24?1,5 для резьбы, имеющей d=24 мм и Р=1,5 мм). Области примене-ния других типов резьб ограничены спе-циальными конструкциями. Крепежные детали и типы соединений. Наибольшее распространение среди резь-бовых деталей получили крепежные болты, винты, шпильки, гайки и вставки. С помощью этих деталей образуют большинство разъемных соединении в конструкциях. Рисунок 19 - Основные типы резьбовых соединений Болт (в соответстивии с рисунком 19, а) и винт (в соответстивии с рисунком 19, б) - стержень с головкой и одним резьбовым концом. Шпилька (рисунок 19, в) имеет два резьбовых конца. Вставка (в соответстивии с рисунком 19, г). Винт с резьбовой втулкой (в соответстивии с рисунком 19, д). Выбор типа соединения определяется проч-ностью материала соединяемых деталей, частотой сборки и разборки соединения в эксплуатации, а также особенностями конструкции и технологии изготовления соединяемых деталей. Соединения болтом применяют только при наличии доступа к гайке и головке болта для скрепления деталей сравнитель-но небольшой толщины (например, при наличии специальных поясков или флан-цев), а также при многократной раз-борке и сборке соединений. В последнем случае (особенно при большой толщине соединяемых деталей) предпочтение отда-ется также соединениям винтом или шпилькой. Соединения винтом и шпилькой при-меняют для скрепления деталей при нали-чии доступа монтажного инструмента лишь с одной стороны (к гайке). Область применения соединений винтом в силовых конструкциях ограничена, пред-почтение отдается соединениям шпилькой. Шпильки фиксируют (стопорят) в корпусной детали (посадкой на резьбе с натя-гом, завинчиванием на сбег резьбы, с помощью клея и т. д.) для предотвра-щения вывинчивания их при отвинчивании гаек. Вставки применяют в основном для по-вышения износостойкости резьбы в корпу-сах из материалов с невысокой проч-ностью, а также для повышения прочности соединений. Резьбовые втулки используют преиму-щественно в корпусах из композиционных материалов. Для предотвращения повреждения по-верхностей соединяемых деталей при за-винчивании гаек под них подкладывают шайбы. Конструктивным разнообразием отли-чаются стержни болтов (винтов). Наряду с обычной (в соответстивии с рисунком 20), наиболее распростра-ненной формой болта (а) приме-няют другие конструкции. Болт (б) в отличие от предыдущего имеет диаметр стержня несколько больше наруж-ного диаметра резьбы. Такие болты уста-навливают в отверстия корпусов без за-зора. В ряде ответственных соединений для увеличения податливости при меняют полые болты (в). Болты на (г и д) имеют центрирующие пояски под головками, а поясок посередине (д) предназначен для гашения виб-раций стержня. Рисунок 20 - Конструктивные формы стержней болтов Формы головок болтов (в соответстивии с рисунком 21) и гаек также разнообразны, выбор их для практического использования опре-деляется преимущественно условиями ра-боты соединений, технологией изготовле-ния крепежных деталей и их сборкой. Рисунок 21 - Конструктивные формы головок болтов (винтов) Для фиксирования деталей на валах, осях и др. применяют установочные винты с резьбой по всей длине стержня и упорным наконечником. Основ-ные материалы болтов (винтов), шпилек и гаек и их механические характеристики нормированы ГОСТ 1759-82. Для болтов, винтов и шпилек из угле-родистых и легированных сталей установ-лены 12 классов прочности, а для гаек - семь и соответствующие им рекоменду-емые марки сталей. Выбор материала определяется условия-ми работы. И технологией изготовления. Стержни болтов в массовом производстве изготовляют из пластичных сталей 10, 15, 15Х, 16ХСН и др. на авто-матах методом холодной высадки, резьбу на болтах накатывают. Для защиты крепежных деталей из угле-родистых сталей от коррозии на них нано-сят окисные пленки или гальванические покрытия (цинковое, кадмиевое, фосфат-ное, медное и др.). Толщина покрытий выбирается в зависимости от шага резьбы и имеет следующие значения: 3-6 мкм для шага до 0,4 мм, 6-9 мкм - для шага 0,4-0,8 мм и 9-12 мкм для шага свыше 0,8 мм. Расчет резьбовых соединений. Расчет резьбового соединения включает в себя обычно две связанные между со-бой задачи: оценку прочности соединения и оценку плотности сты-ка. Прочность соединения определяется, как правило, прочностью болта (шпильки), и для ее оценки необходимо знать напряжения в сечении с наименьшей площадью. В случае, когда внешняя нагрузка на болт изменяется циклически от 0 до F , амплитуда переменных напряжений в сечении по внутреннему диаметру резьбы и среднее напряжение Практика и экспериментальные исследо-вания показали, что прочность затянутых резьбовых соединений при переменной на-грузке определяется ее амплитудой ; чем меньше , тем больше долговечность и ресурс работы соединений. Поэтому одна из важнейших задач конструктора резьбо-вого соединения - добиться снижения внешней нагрузки на болт (шпильку). Правило конструирования резьбового соединения: жесткие фланцы -податливые болты. Плотность стыка определяется остаточной силой в стыке. Внешняя на-грузка F уменьшает силу на стыке деталей до значения Если сила на стыке станет равной нулю, то стык раскроется и вся внешняя нагрузка будет восприниматься болтом, что опасно для его прочности. Для предотвращения раскрытия стыка должно соблюдаться условие Fс>0; тогда минимальная сила затяжки Обычно назначают где н - запас по плотности стыка равен 1,25-2 для постоянных нагрузок; 2,5-4 для переменных нагрузок. Для герметизации стыков применяют плоские прокладки из резины, картона, алюминия, меди и других мягких мате-риалов, упругие кольца, герметики и т. д. Герметичность стыков и соединений про-веряют течеискателями и другими спосо-бами. Таким образом, сила предварительной затяжки определяется внешней нагрузкой. Допустимое напряжение затяжки у0=F0/A1?0,8уT где уT - предел текучести материала болта. Обычно назначают у0 = (0,4?0,7) уT. Для того чтобы соединения работали в расчетных силовых условиях, необходи-мо контролировать затяжку соединений. 14. Соединения с натягом Соединение деталей машин с натягом - разностью посадочных размеров - осуществляют за счет их пред-варительной деформации. С помощью натяга соединяют обычно детали с цилиндри-ческими и реже коническими поверхностями контакта. Соединение деталей с натягом представляет собой сопря-жение, в котором передача нагрузки от одной детали к другой осуществляется за счет сил трения на поверх-ностях контакта, образующихся благодаря силам упругости. Вследствие этого соеди-нение имеет нежесткую фиксацию деталей в осевом и окружном направлениях. Рисунок 22 - Соединения с натягом венца червячного колеса с центром (а) и шарикоподшипника с валом (б) Соединения используют сравнительно часто для посадки на валы и оси зуб-чатых колес, шкивов, звездочек и др. Два способа соединения: 1) При сборке механическим способом охватывае-мую деталь с помощью пресса устанавливают в охватывающую деталь или наоборот. Этот способ ис-пользуется при сравнительно небольших натягах. 2) Тепловой способ соединения применяет-ся при больших натягах и производится путем нагрева охватывающей детали до температуры 300 °С в масляной ванне или охлаждения в жидком азоте охватываемой детали. Вы-бор способа зависит от соотношения масс и конфигурации деталей. В настоящее время получают распрост-ранение так называемые термомеханичес-кие соединения элементами с памятью формы. Это свойство присуще сплавам, испытывающим обратимое мартенситное превращение, и характеризуется как спо-собность материала, деформированного в мартенситном состоянии, полностью или частично восстанавливать свою форму в процессе последующего нагрева. Для конструкционных элементов с па-мятью формы используют никель титановый сплав с температурами мартенсит-ного превращения -80?-150 °С и вос-становления формы -140?-60 °С. Сплав практически полностью восстанавливает заданную деформацию и развивает на-пряжение в условиях противодействия процессу формовосстановления до 200--400 МПа. Для предупреждения быстрого нагрева деталь устанавливают монтажными кле-щами, губки которых либо изготовляют из материала с большей теплоемкостью, на-пример, меди, либо имеют хлопчатобумаж-ный вкладыш, впитывающий жидкий азот. Допускается сборка такими клещами в течение 2-3 мин. Нагрев детали теплотой окружающей среды приводит к восстановлению ее прежних размеров и образованию натяга. Достоинства соединений с натягом оче-видны: они сравнительно дешевы и просты в выполнении, обеспечивают хорошее цент-рирование сопрягаемых деталей и могут воспринимать значительные статические и динамические нагрузки. Области примене-ния таких соединений непрерывно расши-ряются. Недостатки соединений: высокая трудо-емкость сборки при больших натягах; сложность разборки и возможность по-вреждения посадочных поверхностей при этом; высокая концентрация напряжений; склонность к контактной коррозии из-за неизбежных осевых микросмешений точек деталей вблизи краев соединения и, как следствие, пониженная прочность соедине-ний при переменных нагрузках; отсутст-вие жесткой фиксации деталей. Расчет соединений и подбор посадки. Ос-новная задача расчета состоит в опреде-лении потребного натяга и соответствую-щей ему посадки по ГОСТ 25347-82 для передачи заданной сдвигающей на-грузки от вращающего момента или осе-вой силы. Возможны случаи, когда посадка не мо-жет быть реализована в конструкции по условиям прочности (обычно охватываю-щей детали). Поэтому при проектировании соедине-ний должны быть обеспечены как требо-вания взаимной неподвижности деталей соединения, так и усло-вия прочности деталей. Условие неподвижности деталей соеди-нения. Выражает собой математически уравнение равновесия: при передаче внеш-ней нагрузки соединяемые детали должны быть взаимно неподвижны. Рисунок 23 - Расчётная схема соединения с натягом Рассмотрим соединение с натягом дета-лей 1 (в соответствии с рисунком 23) и 2 при действии сдвигаю-щей силы, например, осевой Fа. Взаимное смещение деталей в соединении ограниче-но деформациями за счет сил сцепления, которые возникают благодаря контактным напряжениям q от натяга. Если принять, что отнесенная к площади контакта сила трения ф пропорциональна контактному напряжению q между сопря-женными деталями, то где f - коэффициент трения. Условие взаимной неподвижности дета-лей соединения при действии сдвигаю-щей нагрузки примет вид где d и l - диаметр и длина посадочной поверхности. Введем в рассмотрение номинальные контактные напряжения ; тогда Из неравенства следует, что нагрузочная способность соединения определя-ется номинальными контактными напряжениями и состоянием контактирующих поверхностей. Напряжения зависят от натяга в соединении и условий работы. Детали соединения будут взаимно не-подвижными, если средние контактные на-пряжения где k - коэффициент запаса сцепления, учитывающий возможное рассеяние значе-ний коэффициентов трения, погрешности в форме контактирующих поверхностей и изгиб деталей, ослаб-ляющие их сцепление. Для соединений, подверженных изгибу, например, соединений валов и зубчатых колес редукторов, принимают значение k=3,0?4,5, понижая таким образом склонность соединений к фреттинг-корро-зии. В остальных случаях k=I,5?2,0. Значение коэффициента сцепления в формуле следует принимать минимальным из или устанавливать экспериментально. Нагрузочная способность соединения может быть увеличена также за счет повы-шения коэффициента трения между деталями. Эффективным оказы-вается осаждение на поверхности вала тон-кого слоя из частиц карбида бора В4С или карбида кремния SiC. Такой слой повышает коэф-фициент трения в соединении с натягом до 0,7 благодаря эффекту микрозацепле-ния и, как следствие, в несколько раз увеличи-вает нагрузочную способность соединения при неизменном натяге. Рисунок 24 - Внешние силы действующие на соединение Сдвигающая сила может быть осевой, т. е. или окружной (тангенциальной), т. е. При совместном действии осевой силы и вращающего момента принимают Уравнение выражает связь внеш-них и внутренних силовых факторов. Для решения задачи следует выразить контакт-ные напряжения через смещения точек деталей. Условие совместности пере-мещений сопряженных деталей. Предположим, что охватывающая деталь 2 запрессована на охватываемую деталь 1. Тогда в резуль-тате деформации точки поверхностей де-талей 1 и 2 получат радиальные перемещения u1 и u2, а радиальный натяг д будет скомпенсирован этими перемеще-ниями, т. е. где Д = dВ- dА - диаметральный натяг деталей. Уравнение отражает геометричес-кую сторону задачи. Для ее решения необходимо выразить смещения в уравне-нии через контактные напряжения. Связь смещений и контакт-ных напряжений в соединении. Контактные напряжения q в общем случае распределены по длине соединения существенно неравномерно, так как равномерной деформации препятствуют выступающие части деталей. Связь смещений и контактных давлений имеет вид где - функция влияния, показы-вающая перемещение точек контакта в сечении z = с от единичной радиальной силы, приложенной в сечении z=ж; i= 1; 2 - номер детали. Значения функции л можно получить расчетом. В предварительном расчете полагают, что контактные напряжения одинаковы во всех точках поверхностей контакта. Это экви-валентно допущению о сопряжении двух цилиндров одинако-вой длины. Рисунок 25 - Расчётная схема соединения с натягом Задача о сопряжении с натягом двух толстостенных цилиндров бесконечной длины рассмотрена в сопротивлении ма-териалов. Установлено, что радиальные перемещения точек кон-такта ; где л1 и л2 - коэффициенты радиальной податливости деталей 1 и 2; qн - номинальное контактное напряже-ние. Смещение u1 считают отрицательным, так как оно происходит в направлении, противоположном направлению оси r. Соотношения отражают физичес-кую сторону задачи. Коэффициенты ра-диальной податливости зависят от ра-диальных размеров и материалов деталей: где d - посадочный диаметр; Е1, н1 и Е2, н2 - модуль упругости и коэффициент Пуассона соответственно для охватывае-мой и охватывающей деталей; d1 - диа-метр отверстия в охватываемой детали; d2 - наружный диаметр охватывающей детали. Учитывая равенство, несложно получить: Отметим, что натяг Д в равенстве является расчетным и соответствует разности посадочных диаметров деталей с идеально гладкими поверхностями. Расчет требуемого натяга. Расчетное значение натяга, обеспечиваю-щее передачу соединением внешней сдви-гающей нагрузки, несложно найти, из соотношений: Расчетный натяг Д принимают в ка-честве минимального требуемого натяга Д* (т. e. Д=Д*) при тепловом способе сборки. Где uR - поправка на обмятие шероховатостей, мкм; uR=5,5(Ra1+Ra2)=1,2(Rz1+Rz2); Ra1 и Ra2, Rz1 и Rz2 - параметры шероховатостей деталей. Если соединение работает при повы-шенной температуре, то ослабление натяга за счет нагрева учитывают поправкой на температурную деформа-цию: где б1 и t1 соответственно коэффициент линейного расширения и рабочая темпера-тура охватываемой детали; б2 и t2 - то же, охватывающей детали. В соединениях быстровращающихся де-талей также происходит «потеря» натяга где с - плотность материала; н - коэф-фициент Пуассона материала детали; щ - угловая скорость. При угловой скорости натяг в соединении исчезнет (qн=0). С учетом этих замечаний минимальный требуемый натяг: при тепловом способе сборки при механическом способе сборки Значение минимального требуемого на-тяга, определяемого условиями нагружения и сборки, используется для подбора минимального натяга посадки (табличного натяга) Nmin: Тип посадки по ГОСТ 25347-82 задает-ся минимальным Nmin и максимальным Nmах табличными натягами. Для его назна-чения необходимо установить также наи-большее допустимое значение натяга, определяемое условиями прочности. Рисунок 26 - Напряжение в поперечном сечении соединения Расчет макcимального натя-га. Натяг вызывает в соединяемых де-талях радиальные уr и окружные уи на-пряжения (в соответствии с рисунком 26). Напряжения в охватываемой детали (вале) Напряжения в охватывающей детали (ступице) где d* - диаметр сечения, в котором вы-числяют напряжения. Распределение напряжений в попереч-ном сечении деталей соединения. Наибольшие напряжения воз-никают у внутренней поверхности охваты-вающей детали (d*=d); здесь ; Условие отсутствия пластических дефор-маций по теории максимальных касатель-ных напряжений где - предел текучести материала де-тали. Практика показала, что небольшие плас-тические деформации в контакте не пони-жают работоспособности соединений, поэ-тому в расчете максимального допусти-мого контактного напряжения принимают , откуда и соответствующий наибольший расчетный натяг Наибольший допустимый натяг Д*max при тепловом способе сборки равен рас-четному, т. е. Д*max=Дmax, а при механи-ческом - Д*max = Дmax +uR. По условиям прочности Д*max?Nmax, где Nmax - максимальный табличный натяг посадки. Уменьшение внутреннего диаметра охва-тываемой детали и увеличение наружного диаметра охватывающей детали Сила запрессовки Если , то , где - наибольшая сдвигающая нагрузка. При этом наименьшая полезная сдвигающая нагрузка При определении и для соеди-нений, выполненных механическим спосо-бом, необходимо из табличных значений натяга Nmax и Nmin вычесть значение uR Разность температур, необходимая при тепловом способе сборки (нагрев или ох-лаждение), где - зазор между деталями при сбор-ке, мкм. Табличные натяги. Каждой стан-дартной посадке с натягом (ГОСТ 25347- 82) соответствуют определенные значения минимального Nmin и максималь-ного Nmax натягов - табличные натяги. Для построения таблиц ис-пользуют два метода расчета натягов и в соответствии с ними натяги назы-вают предельными и вероятностными. Предельные натяги определяются откло-нениями отверстий и валов. При посадке по системе отверстий где ES и es - верхнее отклонение соот-ветственно отверстия и вала; ei - нижнее отклонение вала. Полученные таким образом натяги назы-вают вероятностными. При нормальном законе распределения размеров где Nm - средний натяг; uр - квантиль нормального распределения; SN - среднее квадратическое отклонение табличного на-тяга. Средний натяг определяется средними значениями отклонений где ; ; Td и TD - допуски соответственно основного отверстия и вала. Среднее квадратическое отклонение таб-личного натяга где Квантиль нормального распределения uр принимает следующие значения в за-висимости от вероятности Р неразруше-ния соединения: P 0,5 0,9 0,95 0,97 0,99 0,995 0,997 0,999 uр 12 1,28 1,64 1,88 2,33 2,58 2,75 0,1 |
РЕКЛАМА
|
||||||||||||||||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |