|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Экономико-статистический анализ производства молока в Кировской областиЭкономико-статистический анализ производства молока в Кировской области1. Обоснование объема и оценка параметров распределения выборочной совокупности Для определения интервального вариационного ряда распределения составим ранжированный ряд распределения в 30 хозяйствах Кировской области по себестоимости 1 ц молока (руб.). Определим количество интервалов по формуле: k = 1 +3,322 lgN, которое составляет 6. Определим шаг интервала по формуле: h = (xmax – xmin) ( k Он составил 99,5. Далее определим границы интервалов, подсчитаем число единиц в каждом интервале и запишем в виде таблицы 1.1. Таблица 1.1. Интервальный ряд распределения хозяйств по себестоимости 1 ц молока. |Группы хозяйств по себестоимости 1 |Число хозяйств | |ц молока, руб. | | |96 – 195,5 |17 | |195,6 – 295 |10 | |295,1 – 394,5 |1 | |394,6 – 494 |1 | |494,1 – 593,5 |- | |593,6 - 693 |1 | |ИТОГО |30 | Для того, чтобы установить, верно ли предположение о том, что эмпирическое (исходное) распределение подчиняется закону нормального распределения, необходимо определить являются ли расхождения между фактическими и теоретическими частотами случайными или закономерными. Для этого используется критерий Пирсона (x2). Данные расчетов представлены в таблице 1.2. Таблица 1.2. Эмпирическое и теоретическое распределение хозяйств по себестоимости 1 ц молока. |Серединное значение |Число ||xi – xср||?(t) |n*h|?(t)|(fi – | |интервала по |хозяйств | | | | |fT)2 | |себестоимости, руб. | |––––––––––| |–––| |––––––––| | | | | |– | |–– | | | |? | |? | |fT | |xi |fi |t |таблично|fT |- | | | | |е | | | |145,8 |17 |0,62 |0,3292 |10 |4,90 | |245,3 |10 |0,31 |0,3802 |11 |0,09 | |344,8 |1 |1,24 |0,1849 |6 |4,17 | |444,3 |1 |2,17 |0,0379 |2 |0,50 | |543,8 |- |3,10 |0,0034 |1 |1 | |643,3 |1 |4,03 |0 |- |- | |Итого |30 |х |х |30 |9,66 | xср = 6364 ( 30 = 212,13 ?2 = 343208,667 ( 30 = 11440,29 ? = ?11440,29 = 106,96 (n ( h) ( ? = (30 ( 99,5) ( 106,96 = 27,92 Таким образом, фактическое значение критерия Пирсона составило: хфакт = 9,66. Табличное значение составляет: хтабл = 11,07. Поскольку фактическое значение критерия меньше табличного, отклонение фактического распределения от теоретического следует признать несущественным. Определим необходимую численность выборки по формуле: n = (t2 ( v2) ( E2, где t – нормированное отклонение; v – коэффициент вариации признаки; Е – относительная величина предельной ошибки (при р = 0,954 Е ( 5%). V = 106,96 ( 212,13 ( 100 = 50,42% n = 22 ( 50,422 ( 52 = 407 Таким образом, для того, чтобы не превысить 5% величину предельной ошибки следовало отобрать 407 предприятий. А при совокупности, равной 30 единицам, фактический размер предельной ошибки составит: Е = (t ( v) ( ?n = (2 ( 50,42) ( ?30 = 18,41 Следовательно, чтобы войти в рамки установленной по численности выборочной совокупности (30 ед.) мы вынуждены допустить большую, чем хотелось бы величину предельной ошибки (18,41%). |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |