|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Аммиак и аминокислоты, их роль в нашей жизниАммиак и аминокислоты, их роль в нашей жизниРеферат По химии Тема: Аммиак и аминокислоты, их роль в нашей жизни Подготовила студентка 1курса Кузнецова Виктория Аминокислоты АМИНОКИСЛОТЫ - это органические (карбоновые) кислоты, в составе которых имеется аминогруппа (- NH2). Участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.; дигидроксифенилаланин (ДОФА) и -аминомасляная кислота служат посредниками при передаче нервных импульсов. Строение аминокислот В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов (см. Генетический код). Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов. История открытия аминокислот Первая аминокислота - аспарагин- была открыта в 1806, последняя из аминокислот, обнаруженных в белках, - треонин - была идентифицирована в 1938. Каждая аминокислота имеет тривиальное (традиционное) название, иногда оно связано с источником выделения. Например, аспарагин впервые обнаружили в аспарагусе (спарже), глутаминовую кислоту - в клейковине (от англ. gluten - глютен) пшеницы, глицин был назван так за его сладкий вкус (от греч. glykys - сладкий). Структура и свойства аминокислот Общую структурную формулу любой аминокислоты можно представить следующим образом: карбоксильная группа (- СООН) и аминогруппа (- NH2) связаны с одним и тем же -атомом углерода (счет атомов ведется от карбоксильной группы с помощью букв греческого алфавита - , , и т. д.). Различаются же аминокислоты структурой боковой группы, или боковой цепи (радикал R), которые имеют разные размеры, форму, реакционную способность, определяют растворимость аминокислот в водной среде и их электрический заряд. И лишь у пролина боковая группа присоединена не только к -углеродному атому, но и к аминогруппе, в результате чего образуется циклическая структура. В нейтральной среде и в кристаллах -аминокислоты существуют как биполяры, или цвиттер-ионы. Поэтому, например, формулу аминокислоты глицина - NH2-CH2-СООH - правильнее было бы записать как NH3+-CH2-COO-Только в наиболее простой по структуре аминокислоте - глицине - в роли радикала выступает атом водорода. У остальных аминокислот все четыре заместителя при -углеродном атоме различны (т. е. -углеродный атом углерода асимметричен). Поэтому эти аминокислоты обладают оптической активностью(способны вращать плоскость поляризованного света) и могут существовать в форме двух оптических изомеров - L (левовращающие) и D (правовращающие). Однако все природные аминокислоты являются L-аминокислотами. К числу же исключений можно отнести D-изомеры глутаминовой кислоты, аланина, валина, фенилаланина, лейцина и ряда других аминокислот, которые обнаружены в клеточной стенке бактерий; аминокислоты D-конформации входят в состав некоторых пептидных антибиотиков(в том числе актиномицинов, бацитрацина, грамицидинов A и S), алкалоидов из спорыньи и т. д. Классификация аминокислот Входящие в состав белков аминокислоты классифицируют в зависимости от особенностей их боковых групп. Например, исходя из их отношения к воде при биологических значениях рН (около рН 7,0), различают неполярные, или гидрофобные, аминокислоты и полярные, или гидрофильные. Кроме того, среди полярных аминокислот выделяют нейтральные (незаряженные); они содержат по одной кислой (карбоксильная) и одной основной группе (аминогруппа). Если же в аминокислоте присутствует более одной из вышеназванных групп, то их называют, соответственно, кислыми и основными. Большинство микроорганизмов и растения создают все необходимые им аминокислоты из более простых молекул. В отличие от них животные организмы не могут синтезировать некоторые из аминокислот, в которых они нуждаются. Такие аминокислоты они должны получать в готовом виде, то есть с пищей. Поэтому, исходя из пищевой ценности, аминокислоты делят на незаменимые и заменимые. К числу незаменимых для человека аминокислот относятся валин, треонин, триптофан, фенилаланин, метионин, лизин, лейцин, изолейцин, а для детей незаменимыми являются также гистидин и аргинин. Недостаток любой из незаменимых аминокислот в организме приводит к нарушению обмена веществ, замедлению роста и развития. В отдельных белках встречаются редкие (нестандартные) аминокислоты, которые образуются путем различных химических превращений боковых групп обычных аминокислот в ходе синтеза белка на рибосомах или после его окончания (так называемая посттрансляционная модификация белков) (см. Белки). Например, в состав коллагена(белка соединительной ткани) входят гидроксипролин и гидроксилизин, являющиеся производными пролина и лизина соответственно; в мышечном белке миозине присутствует метиллизин; только в белке эластине содержится производное лизина - десмозин. Использование аминокислот Аминокислоты находят широкое применение в качестве пищевых добавок. Например, лизином, триптофаном, треонином и метионином обогащают корма сельскохозяйственных животных, добавление натриевой соли глутаминовой кислоты (глутамата натрия) придает ряду продуктов мясной вкус. В смеси или отдельно аминокислоты применяют в медицине, в том числе при нарушениях обмена веществ и заболеваниях органов пищеварения, при некоторых заболеваниях центральной нервной системы (-аминомасляная и глутаминовая кислоты, ДОФА). Аминокислоты используются при изготовлении лекарственных препаратов, красителей, в парфюмерной промышленности, в производстве моющих средств, синтетических волокон и пленки и т. д. Для хозяйственных и медицинских нужд аминокислоты получают с помощью микроорганизмов путем так называемого микробиологического синтеза(лизин, триптофан, треонин); их выделяют также из гидролизатов природных белков (пролин, цистеин, аргинин, гистидин). Но наиболее перспективны смешанные способы получения, совмещающие методы химического синтеза и использование ферментов. Аммиак АММИАК - (от греч. hals ammoniakos - амонова соль, нашатырь, который получали около храма бога Амона в Египте), NH3, бесцветный газ с резким запахом. Молекула имеет форму правильной пирамиды. Связи N-H полярны. Молярная масса 17 г/моль. Плотность 0,639 г/дм3. Температура кипения -33,35°C, температура плавления -77,7°C. Критическая температура 113°C, критическое давление 11,425 кПа. Теплота испарения 23,27 кДж/моль, теплота плавления 5,86 кДж/моль. Получение Впервые чистый аммиак был получен в 1774 Дж. Пристли. Промышленную технологию получения аммиака разработали и осуществили в 1913 немцы Ф. Габер и К. Бош, получившие за свои исследования Нобелевские премии. В промышленности аммиак получают в стальных колоннах синтеза, наполненных катализатором - пористым железом. Через колонну под давлением 30 МПа и при температуре 420-500 °C пропускают смесь азота и водорода. Так как реакция 3Н2 + N2 = 2NH3 + 104 кДж обратима, при однократном проходе газовой смеси через колонну в аммиак превращается не более 15-25% исходных веществ. Для полного превращения необходима многократная циркуляция, которую осуществляют с помощью компрессора. В цикл непрерывно вводят свежую газовую смесь взамен использованной на образование аммиака. В лаборатории газообразный аммиак получают нагреванием аммиачной воды или твердой смеси NH4Сl и Сa(OH)2: 2NH4Сl + Сa(OH)2 = 2NH3 + CaCl2 + 2H2О Для осушения аммиака его пропускают через смесь извести с едким натром. Физические и химические свойства Хорошо растворим в воде (700 объемов NH3 в 1 объеме воды при комнатной температуре). Максимальная массовая концентрация (%) аммиака в водном растворе 42,8 (0°C), 33,1 (20°C), 23,4 (40°C). Плотность водных растворов аммиака (кг/дм3): 0,97 (8% по массе), 0,947 (16%), 0,889 (32 %). Раствор аммиака в воде называют аммиачной водой, ее концентрация 25%. В водном растворе аммиак частично ионизирован, что обусловливает щелочную реакцию раствора: NH3 + Н2О = NH4+ + ОН- На самом деле молекул NH4ОН в растворе не существует. Атом N в молекуле аммиака связан тремя ковалентными связями с атомами водорода и сохраняет при этом одну неподеленную пару. Он не может быть соединен с атомами кислорода и водорода пятью полярными ковалентным и связями. Имеется в виду гидратированный аммиак, NН3·Н2О. Аммиак проявляет свойства основания (основания Бренстедта). В кислой среде молекула NH3 присоединяет ион Н+, образуется ион аммония NH4+. Реагируя с кислотами, аммиак нейтрализует их, образуя соли аммония: NH3 + HCl = NH4Cl Большинство солей аммония бесцветны и хорошо растворимы в воде. Растворы солей, образованные аммиаком и сильными кислотами, имеют слабокислую реакцию. Смесь аммиака и воздуха взрывоопасна. Но горит аммиак только в чистом кислороде бледным зеленым пламенем: 4NH3 + 3О2 = 2N2 + 6Н2О, применение платинового катализатора, образуется оксид азота (II) NО: 4NH3 + 5О2 = 4NО + 6Н2О Аммиак обладает восстановительными свойствами: 2NH3 + Fe2O3 = 2Fe + N2 + 3H2O При определенных условиях аммиак реагирует с галогенами. Щелочные и щелочно-земельные металлы реагируют с жидким и газообразным аммиаком, давая амиды. При нагревании в Атмосфере аммиака многие металлы и неметаллы (Zn, Cd, Fe, Cr, B, Si и другие) образуют нитриды. Жидкий аммиак взаимодействует с серой: 10S + 4 NH3 = 6 Н2S + N4S4 При 1000°C аммиак реагирует с углем, образуя HCN и частично разлагаясь на азот и водород. Применение В промышленности аммиак используют при получении азотной кислоты HNO3, в производстве азотных минеральных удобрений, в качестве хладагента. Аммиачная вода является азотным удобрением. Нашатырный спирт используют в медицине. Физиологическое действие Аммиак ядовит, ПДК 20 мг/м3. Жидкий аммиак вызывает сильные ожоги. При содержании в воздухе 0,5% по объему аммиак сильно раздражает слизистые оболочки. При остром отравлении поражаются глаза и дыхательные пути. При хроническом отравлении - расстройство пищеварения, катар верхних дыхательных путей, ослабление слуха. Список литературы 1. Советская энциклопедия «Биология и Химия» 2. Советская энциклопедия «Хочу всё знать» С. С. Бердоносов, П. С. Бердоносов, Р. А. Матвеева |
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |