|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Анализ технологического процесса схемы переэтерификации диметилового эфира цианоэтилфосфоновой кислоты моноэтиленгликоль (мет) акрилатомАнализ технологического процесса схемы переэтерификации диметилового эфира цианоэтилфосфоновой кислоты моноэтиленгликоль (мет) акрилатомСОДЕРЖАНИЕ1.Информационный поиск 2. Концептуальное описание схемы переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль (мет) акрилатом 3. Конструктивно-функциональный анализ лабораторного реактора для проведения переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль(мет)акрилатом 4. Функционально-физический анализ ТО 5. Анализ технологического процесса переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль(мет)акрилатом 6. Постановка задачи поиска нового технического решения 7.Синтез с помощью эвристических приемов 8. Морфологический анализ процесса и аппарата для проведения переэтерификации 9. Морфологический синтез Выводы История развития человечества - это прежде всего история изобретения, создания и совершенствования различных изделий и технологий, другими словами - процесса инженерного творчества (ИТ). Результатами ИТ чаще всего являются новые, более совершенные и эффективные технические объекты и технологии. Техническим объектом (ТО) называется созданное человеком или автоматом реально существующее устройство, предназначенное для удовлетворения определенной потребности. Каждый ТО может быть представлен определенным иерархически соподчиненными описаниями. На самой нижней ступени данной иерархической структуры стоит потребность, или функция ТО. Это понятие должно рассматриваться достаточно подробно, иначе ошибка на уровне постановки потребности может привести к созданию невостребованного технического проекта. Выявление потребности в ТО. Потребность- общепринятое и краткое описание на естественном языке назначения ТО или цели его создания. При описании потребности отвечают на вопрос о том, какой результат желают получить, каким особым условиям и ограничениям при этом нужно удовлетворить. Можно ответить на этот вопрос с позиции темы магистерской диссертации: «Синтез фосфорсодержащих метакрилатов на основе диметилового эфира β-цианоэтилфосфоновой кислоты». В настоящее время актуальной является задача получения полимеров с пониженной горючестью, перспективных для применения в строительстве, технике и прочих отраслях, а также “оптимальный” синтез таких соединений. В магистерской диссертации рассматривается способ получения мономеров для получения таких полимеров, а именно переэтерификацией диметилового эфира β-циано-этилфосфоновой кислоты моноэтиленгликольметакрилатом . Описание любой потребности формализованно можно представить в виде трех компонентов: где D –указание действия, производимого рассматриваемым ТО и приводящего к желаемому результату, т.е. к удовлетворению (реализации) интересующей потребности; G – указание объекта, на который направлено действие D, H- указание особых условий и ограничений, при которых выполняется действие D. Представим это в таблице: Таблица 1 Описание потребности в рассматриваемом ТО
Для получения сведений о данном техническом решении и об его аналогах был произведен информационный поиск, который позволил получить сведения о новейших достижениях в требуемой предметной области и исключить дублирование исследований и разработок. На его основании можно сделать вывод о том, что все предыдущие исследования были посвящены реакциям фосфорилирования других органических веществ. Таким образом, поставленная цель исследования и синтеза фосфорсодержащих метакрилатов на основе диметилового эфира β-цианоэтилфосфоновой кислоты является актуальной и востребованной. При выполнении научно-технических разработок и исследований составной частью деятельности любого инженера и ученого является поиск и обработка источников информации. Чтобы создавать новые, на уровне мировых образцов изделия, нужно быть на переднем крае науки и техники, профессионально владеть информацией в области своей специализации, быть информированным в смежных областях. Фактически требуемая и полезная для решения конкретной инженерной задачи информация получается в результате работы огромного количества специалистов из различных областей знания, она рассеяна по множеству источников, непрерывно пополняется и корректируется. Качественно выполненный информационный поиск позволяет вооружить инженера новейшими достижениями в требуемой предметной области. Наиболее характерным в деятельности инженера является тематический информационный поиск, который включает в себя в качестве элементов документальный и фактографический поиск, а также аналитическую переработку полученной информации. Информационный поиск предполагает решение следующих задач: 1.выявление информационной потребности; 2.постановка задачи поиска информации; 3.поиск источников информации; 4.выбор информации из источников; 5.переработка информации к виду, удобному для использования при решении его основной научно-технической задачи. Составной частью информационного поиска является проведение патентных исследований. Целью патентных исследований является получение исходных данных для обеспечения высокого технического уровня и конкурентноспособности объекта техники, использование современных научно-технических достижений, исключение неоправданного дублирования исследований и разработок Таблица 2 Основные параметры регламента поиска
Таблица 3 Патентная документация, отобранная для анализа
2. Концептуальное описание схемы переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль(мет)акрилатом В колбу Кляйзена, снабженную водяным холодильником, помещают диметилового эфира β-цианоэтилфосфоновой кислоты. Добавляют моноэтиленгликольметакрилат (МЭГ), а также около 1 % гидрохинона для ингибирования реакции полимеризации МЭГа. Нагревают силиконовую баню до ~150°С и выдерживают эту температуру в течение 5-6 часов. По мере протекания реакции переэтерификации, проходя через водяной холодильник, конденсируются пары метанола, который собирается в приемник. В качестве побочной может выступать реакция самопроизвольной полимеризации МЭГ при повышенных температурах: Рис.1 Лабораторный реактор для проведения переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль(мет)акрилатом КФА выполняется в 3 стадии: · Вначале выбранный для анализа технический объект декомпозируется на отдельные элементы, в зависимости от потребности задачи и с учетом системных свойств объекта; · На второй стадии для каждого элемента формулируется одна или несколько функций, также в зависимости от проектной ситуации; · На третьей стадии результаты анализа для наглядного представления изображаются графически. Таблица 4 КФА лабораторного реактора для проведения переэтерификации
Изобразим КФС лабораторного реактора для проведения переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль(мет)акрилатом: Рис.2 КФС лабораторного реактора для переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль(мет)акрилатом Таблица 5 Экспертная оценка недостатков элементов ТО
4. Функционально-физический анализ ТООсобенностью функционально-физического анализа является то, что при его проведении учитывается физическая сущность технического объекта, которая является наиболее понятной для человека абстрактной моделью. Для проведения ФФА используется многократное, ступенчатое формулирование задачи с постепенно увеличивающейся степенью конкретности. Объекты материального мира, взаимодействуя, вызывают протекание физических процессов, которые можно описать физическими операциями (ФО). Физические операции (ФО) могут быть реализованы с помощью одного физико-технического эффекта (ФТЭ). Описание ФТЭ ведется на основе анализа выделенных ФО элементов. Таблица 6 Описание ФТЭ, действующих в схеме переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль (мет)акрилатом
Основные параметры процесса: · Т-температура реакционной массы; · С(эфира)-концентрация диметилового эфира β-цианоэтилфосфоновой кислоты; · τ- время реакции; · С(МЭГ) – концентрация моноэтиленгликольметакрилата · C(гидрохинона)- концентрация гидрохинона. Недостатками данной схемы переэтерификации являются: 1) Длительное время реакции из-за недостаточной активности исходных реагентов; 2) Практически невозможно прогнозировать количественный выход продукта из-за сложной качественной зависимости от параметров процесса. 3) Возможно осмоление и полимеризация целевого продукта 4) Наряду с основной реакцией может протекать полимеризация МЭГ. 5. Анализ технологического процесса переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль (мет)акрилатомПроведем анализ реакции переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль(мет)акрилатом. Таблица 7 Анализ технологического процесса переэтерификации
Совокупность указанных недостатков различных стадий рассматриваемой химической реакции позволяет выявить ее основной и наиболее существенный недостаток - низкую скорость реакции, а, следовательно, большое время проведения синтеза. Это обусловлено низкой концентрацией активных молекул и малым числом их эффективных актов взаимодействия, приводящих к образованию целевого продукта, а также склонностью молекул МЭГа вступать в реакцию полимеризации. 6. Постановка задачи поиска нового технического решенияДля реактора: 1) Недостаток - большое время реакции; 2) Элемент системы, ответственный за этот недостаток - водяной холодильник; 3) Параметры этого элемента – длина, форма теплопередачи водяного холодильника; 4) Ввести в систему водяной холодильник большей длины и более сложной формы (например, шариковый, змеевиковый, многоходовой или другой), для того, чтобы эффективнее “уходили” из реактора пары метанола, который сдвигает равновесие в обратную сторону и тормозит процесс. 5) Конфликт между показателями качества: улучшение отвода теплоты паров метанола за счет увеличения поверхности теплообмена в холодильнике приводит к возрастанию гидравлического сопротивления холодильника, и, как следствие, к затруднению отвода метанола. 6) Функциональный конфликт: чтобы улучшить теплоотвод от паров метанола, необходимо использовать холодильник, не создающий повышенного гидравлического сопротивления. 7) Конфликт свойств: холодильник должен быть таким, чтобы при максимальном теплоотводе сопротивление движению метанола было минимальным. 8) Таким образом, для решения этих конфликтов, необходимо использовать не один длинный холодильник сложной формы, а систему нескольких n коротких холодильников более сложной формы, например, так: При этом используется прием №5: изменить условия, в которых находится узловой элемент таким образом, чтобы его различные части имели различные значения параметра, указанного в формуле конфликта свойств – то есть применение шарикового холодильника, различные части которого имеют бо́льшую поверхность теплообмена и пониженное гидравлическое сопротивление. Показатель эффективности ТС, улучшаемый при этом – увеличение скорости конденсации и количества сконденсированного метанола, и, как следствие, сокращение времени реакции. Для процесса: 1) Недостаток - низкий выход процесса; 2) Элемент системы, ответственный за этот недостаток – моноэтиленгликольметакрилат (МЭГ); 3) Один из параметров этого элемента – склонность этого вещества к побочной реакции полимеризации; 4) Необходимо понизить активность элемента системы - моноэтиленгликольметакрилата. 5) Конфликт между показателями качества: со снижением активности МЭГ в побочной реакции полимеризации, падает также его активность и в основной реакции переэтерификации. 6) Функциональный конфликт: необходимо избирательно понизить активность МЭГа в побочной реакции, и повысить (или оставить прежней) в основной реакции. 7) Химический конфликт свойств: необходимо придать моноэтиленгликолю свойства низкой полимеризуемости, и одновременно реакционоспособность при взаимодействии с эфиром. 8) Необходимо применить прием № 9: включить узловой элемент в состав системы, которая характеризуется одним значением параметра, указанного в формуле конфликта свойств, а узловой элемент - другим значением, то есть, ввести МЭГ в систему, придающую МЭГу низкую способность к полимеризации (содержащую ингибиторы полимеризации). 9). Показатель эффективности ТС, который при этом увеличился - выход реакции, за счет снижения доли побочной реакции. 7. Синтез с помощью эвристических приемов Синтез с помощью эвристических приемов проведем благодаря автоматизированной информационно-поисковой системе. Уровень проектирования - химическая система. Таблица 8 Синтез решений с помощью эвристических приемов
Таблица 9 Технические функции физических эффектов
8. Морфологический анализ процесса и аппарата для проведения переэтерификацииТаблица 10 Оценка вариантов технических решений (1)
Таблица 11Оценка вариантов технических решений (2)
9. Морфологический синтезДля реактора получено 216 комбинаций. По экономичности: 1-я комбинация: 2-я комбинация: Силиконовая баня: 6 Силиконовая баня: 6 Тюрингское стекло: 8 Тюрингское стекло: 8 Круглый: 6 Круглый: 6 Система шариковых: 8 Шариковый: 6 У=28 У=26 По простоте конструкции: 1-я комбинация: 2-я комбинация: Силиконовая баня: 7 Силиконовая баня: 7 Тюрингское стекло: 7 Тюрингское стекло: 7 Круглый: 8 Круглый: 8 Обратный: 8 Шариковый: 5 У=30 У=27 По надежности: 1-я комбинация: 2-я комбинация: Силиконовая баня: 8 Силиконовая баня: 8 Иенское стекло разотерм: 7 Иенское стекло разотерм: 7 Круглый: 6 Круглый: 6 Система шариковых: 7 Шариковый: 6 У=28 У=27 Для процесса: 32 комбинаций По селективности: 1-я комбинация: 2-я комбинация: Эфир с конц. не менее 98%: 5 Эфир с конц. не менее 98%: 5 МЭГ ХЧ: 6 МЭГ ХЧ: 6 Cu: 5 Cu: 5 Гидрохинон: 8 Гидрохинон : 8 Гомофазная ж-ж: 6 Гомофазная ж-ж: 6 1500С: 7 1300С: 4 У=37 У=34 По времени пребывания: 1-я комбинация: 2-я комбинация: Эфир с конц. не менее 98%: 6 Эфир с конц. не менее 98%: 6 МЭГ ХЧ: 6 МЭГ ХЧ: 6 Cu: 5 Cu: 5 Гидрохинон: 6 Гидрохинон: 6 Гомофазная ж-ж: 5 Гомофазная ж-ж: 5 1500С: 7 1300С: 3 У=35 У=31 По степени конверсии: 1-я комбинация: 2-я комбинация: Эфир с конц. не менее 98%: 6 Эфир с конц. не менее 98%: 6 МЭГ ХЧ: 5 МЭГ ХЧ: 5 Cu: 5 Cu: 5 Гидрохинон: 6 Гидрохинон: 6 Гомофазная ж-ж: 5 Гомофазная ж-ж: 5 1500С: 5 1300С: 2 У=32 У=29 Расчет Ки. Для реактора: По первому критерию:
л=0.3 л=0.4 л=0.3 Ки=(6·0.3+7·0.4+8·0.3)+(8·0.3+7·0.4+1·0.3)+(6·0.3+8·0.4+6·0.3)+(8·0.3+8·0.4+7·0.3)=27 По второму критерию:
л=0.3 л=0.4 л=0.3 Ки=(6·0.3+7·0.4+8·0.3)+(8·0.3+7·0.4+1·0.3)+(6·0.3+8·0.4+6·0.3)+(8·0.3+8·0.4+7·0.3)=27 По третьему критерию:
л=0.3 л=0.4 л=0.3 Ки=(6·0.3+7·0.4+8·0.3)+(3·0.3+6·0.4+7·0.3)+(6·0.3+8·0.4+6·0.3)+(8·0.3+8·0.4+7·0.3)=26.9 Для процесса: По первому критерию:
л=0.2 л=0.5 л=0.3 Ки=(5•0.2+6•0.5+6•0.3)+(6•0.2+6•0.5+5•0.3)+(5•0.2+5•0.5+5•0.3)+(8•0.2+6•0.5+6•0.3)++(6•0.2+5•0.5+5•0.3)+(7•0.2+7•0.5+6•0.3)=34.8 По второму критерию:
л=0.2 л=0.5 л=0.3 Ки=(5•0.2+6•0.5+6•0.3)+(6•0.2+6•0.5+5•0.3)+(5•0.2+5•0.5+5•0.3)+(8•0.2+6•0.5+6•0.3)+(6•0.2+5•0.5+5•0.3)+(7•0.2+7•0.5+6•0.3)=34.8 По третьему критерию:
л=0.2 л=0.5 л=0.3 Ки=(5•0.2+6•0.5+6•0.3)+(6•0.2+6•0.5+5•0.3)+(5•0.2+5•0.5+5•0.3)+(8•0.2+6•0.5+6•0.3)+(6•0.2+5•0.5+5•0.3)+(7•0.2+7•0.5+6•0.3)=34.8 1. На основе системного подхода проведен функционально-физический анализ процесса переэтерификации диметилового эфира β-цианоэтилфосфоновой кислоты моноэтиленгликоль(мет)акрилатом и реактора для его проведения. В результате были выявлены следующие недостатки: а) низкий выход продукта реакции; б) большое время синтеза. 2. Для разрешения конфликтов в технических и химических системах предложены решения: а) для реактора: введение системы водяных шариковых холодильников меньшей длины. б) для процесса: использование в качестве ингибитора побочной реакции смеси меди и гидрохинона. 3. Массив проектных решений для реактора составил 216 комбинаций, для процесса- 32 комбинации. Определены лучшие варианты по критериям экономичности, простоты конструкции, надежности (для реактора), селективности, времени пребывания, степени конверсии (для процесса). На основе аддитивной свертки критериев для реактора определен наиболее оптимальный проектный вариант по аппарату: круглый реактор, изготовленный из тюрингского стекла, снабженный системой водяных шариковых холодильников, в качестве теплопередающего устройства используется силиконовая баня. На основе аддитивной свертки критериев определен наиболее проектный вариант по процессу: использование в качестве исходных реагентов “чистых” эфира и МЭГа, в качестве ингибитора – смесь Сu и гидрохинона, синтез ведут при температуре 150 0С в гомофазной системе ж-ж. 4. Произведена постановка задачи синтеза нового технического решения для реактора. Введение системы водяных шариковых холодильников небольшой длины. 5. Произведена постановка задачи синтеза нового технического решения для процесса. Использование в качестве ингибитора смеси меди и гидрохинона. |
РЕКЛАМА
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |