|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - БелкиБелкиСинтез белков.
Расщепление. Расщепление в желудке (кислая среда). Всасывание в тонком кишечнике.
На нужды организма: CO2, Н2О, NH3 -выведение. (аминокислоты выстраиваются в различные последовательности). Жиры Углеводы.
белки (алиментарная дистрофия – необратимая) Весь синтез белков состоит из двух процессов: транскрипции и трансляции. 1. Транскрипция – процесс считывания, синтез РНК, осуществляемый РНК полимеразой. Процесс идёт с одной цепи ДНК. Транскрипция производится одним или несколькими генами, отвечающих за синтез определённого белка. У прокариотов этот участок называется опероном. 2. В начале каждого оперона находится площадка для РНК полимеразы – промотр – специальная последовательность нуклеотидов РНК, которую фермент определяет благодаря химическому средству. Присоединяется к просмотру и начинается синтез иРНК. Дойдя до конца оперона фермент встречает сигнал (определённую последовательность нуклеотидов), который означает конец считывания. Стадии процесса: 1. Связывание РНК полимеразы с промотором. 2. Инициация – начало синтеза. 3. Элонгация – рост цепочки РНК. V=50 нуклеотидов/секунда. 4. Терминация – завершение синтеза. Трансляция – происходит в ядре на рибосомах. Этапы: 1. Аминокислоты доставляют тРНК к рибосомам. Кодоны шифруют аминокислоты. На вершине тРНК имеется последовательность трёх нуклеотидов, компланарных нуклеотидам кодона в иРНК, - антикодон. Фермент определяет антикодон и присоединяет тРНК аминокислоту. 2. На рибосоме тРНК переводит с «языка» нуклеотидов на «язык» аминокислот. Далее аминокислоты отрываются от тРНК. 3. Фермент синтеза присоединяет аминокислоту к полипептидной цепи. Синтез завершён и готовая цепь отходит от рибосом. Строение белков. Белки – это высокомолекулярные соединения, молекулы которых представлены двадцатью альфа – аминокислотами, соединёнными пептидными связями – СО - NН - · Дипепетиды · Полипептиды. Мономерами белков являются аминокислоты. Кислотные свойства аминокислот определятся карбоксильной группой (-СООН), щелочные – аминогруппой (-NH2). Каждая из 20 аминокислот имеет одинаковую часть, включающую обе эти группы (-CHNH2 – COOH), и отличается от любой другой особой химической группировкой R – группой, или радикалом. Существуют: · Простые белки – состоящие из одних аминокислот. Например, растительные белки – проламины, белки кровяной плазмы – альбулины и глобулины. · Сложные белки – помимо аминокислот имеют в своём составе другие органические соединения (нуклеиновые кислоты, липиды, углеводы), соединения фосфора, металлы. Имеют сложные названия нуклеопротеиды, шикопротеиды и т. д. Простейшая аминокислота – глицерин NH2 – CH2 – COOH. Но разные аминокислоты могут содержать различные радикалы CH3 – CHNH2 – COOH H – O - - CH2 – CHNH2 – COOH Структура белков. Образование линейных молекул белков происходит в результате соединения аминокислот друг с другом. Карбоксильная группа одной аминокислоты сближается с аминогруппой другой, и при отщеплении молекулы воды между аминокислотными остатками возникает прочная ковалентная связь, называемая пептидной. Типы структур: · Первичная – определяется последовательностью аминокислот. Из трёх аминокислот – 27 комбинаций, тогда из 20 аминокислот – 101300 длиной каждая не менее 100 остатков, следовательно, продолжается эволюционный процесс. · Вторичная – спираль, полая внутри, которая удерживается водородными связями, при этом радикалы направлены наружу. · Третичная – физиологически активная структура, спираль, закрученная в клубок. Отрицательно и положительно заряженные R – группы аминокислот притягиваются и сближают участки белковой цепи, так образуется клубок, поддерживаемый сульфидными мостками (- S – S -). · Четвертичная структура – некоторые белки, например гемоглобин и инсулин, состоят из нескольких цепей, различающихся по первичной структуре. В человеческом организме около 100000 белков, молекулярная масса которых от нескольких тысяч до нескольких миллионов. История вопроса.
В настоящее время строение и функции большинства белков известны. История изучения белков началась с исследования Беккари (1878г), который впервые из пшеничной муки выделил белковое вещество, названное им ''клековиной''. В 1888 г. А. Я. Данилевский предположил существование в белках -N-S- химических группировок. В 1902 г. Э. Фишер предложил пептидную теорию строения белка. В 1951 г. Л. Полинг разработал модель вторичной структуры белка. В 1953 г. Сэнгер расшифровал аминокислотную последовательность в инсулине (гормон поджелудочной железы), а через 10 лет уже тот же инсулин был получен путем искусственного синтеза из аминокислот. Совершенствование методов исследования достигло такого уровня, что в настоящее время изучение структуры белковой молекулы является относительно простым делом и для большего количества белков установлено их строение (аминокислотный состав и аминокислотное строение).
Перспективы.
У белков очень сложное строение и на данном этапе развития науки очень сложно выявить структуру молекул белков. Первый белок, у которого была расшифрована первичная структура, был инсулин. Это случилось в 1954 году. Для этого понадобилось около 10 лет. Синтез белков - очень сложная задача, и если ее решить, то возрастет количество ресурсов для дальнейшего использования их в технике, медицине и т.д., а также уже возможен биохимический и синтетический способы получения пищи. А.Н. Несмеянов провел широкие исследования в области создания микробиологической промышленности по производству искусственных продуктов питания. Практическое осуществление путей получения такой пищи ведется в двух основных направлениях. Одно из них основано на использовании белков растений, например сои, а второе - на использовании белков продуктов, полученных микробиологическим путем из нефти. В природе широко представлена автоматическая самосборка надмолекулярных структур и инициатором ее являются белковые молекулы. Это дает надежду выяснить закономерности формообразования у растений и животных и понять молекулярные механизмы, обеспечивающие сходство родителей и детей. Чем глубже химики познают природу и строение белковых молекул, тем более они убеждаются в исключительном значении получаемых данных для раскрытия тайны жизни. Раскрытие связи между структурой и функцией в белковых веществах - вот краеугольный камень, на котором покоится проникновение в самую глубокую сущность жизненных процессов, вот та основа, которая послужит в будущем исходным рубежом для нового качественного скачка в развитии биологии и медицины. Биологическое значение.
Белки входят в состав живых организмов и являются основными материальными агентами, управляющими всеми химическими реакциями, протекающими в организме. Одной из важнейших функций белков является их способность выступать в качестве специфических катализаторов (ферментов), обладающих исключительно высокой каталитической активностью. Без участия ферментов не проходит почти ни одна химическая реакция в живом организме. Вторая важнейшая функция белков состоит в том, что они определяют механо - химические процессы в живых организмах, в результате которых поступающая с пищей химическая энергия непосредственно превращается в необходимую для движения организма механическую энергию. Третьей важной функцией белков является их использование в качестве материала для построения важных составных частей организма, обладающих достаточной механической прочностью, начиная с полупроницаемых перегородок внутри клеток, оболочек клеток и их ядер и заканчивая тканями мышц и различных органов, кожи, ногтей, волос и т.д. Белки являются необходимой составной частью продуктов питания. Отсутствие или недостаточное количество их в пище вызывает серьезные заболевания. Важную роль в жизнедеятельности играют комплексы белков с нуклеиновыми кислотами - нуклеопротеиды. Из нуклеопротеидов состоят, в частности, хромосомы, важнейшие составные части ядра клетки, ответственные за хранение наследственной информации, а также рибосомы - мельчайшие частицы протоплазмы, в которых происходит синтез белковых молекул.
Белки (реферат по химии)
Санкт-Петербург, 2003 год Список литературы:
1. Энциклопедия для детей “Аванта+”. Том 17. Химия. Москва 2000. 2. Ю.А. Овчинников, А.Н. Шамин, «Строение и функции белков», Москва, 1983. 3. В.Г. Жиряков, «Органическая химия», Москва, 1968. 4. Общая биология, учебник для 10-11 класса, Москва, 1999. Это интересно!
1) Цветные реакции на белки (качественные реакции) (белок куриного яйца в 100 г воды) а) ксантопротеиновая: 1 мл раствора + 5-6 капель концентрированной НNO3 ярко - желтый цвет б) блуретовая: 1-2 мл раствора + щелочь + 2-3 капли CuSO4 красно - фиолетовый цвет. 2) Почему белки боятся тепла. Связи, поддерживающие пространственную структуру белка, довольно легко разрушаются. Мы знаем, что при варке яиц прозрачный яичный белок превращается в упругую белую массу, а молоко при скисании загустевает. Происходит это из-за разрушения пространственной структуры белков альбумина в яичном белке и казеина (от лат. caseus — «сыр») в молоке. Такой процесс называется денатурацией. В первом случае её вызывает нагревание, а во втором — значительное увеличение кислотности (в результате жизнедеятельности обитающих в молоке бактерий). При денатурации белок теряет способность выполнять присущие ему в организме функции (отсюда и название процесса: от лат. denaturare — «лишать природных свойств»). Денатурированные белки легче усваиваются организмом, поэтому одной из целей термической обработки пищевых продуктов является денатурация белков. |
РЕКЛАМА
|
|||||||||||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |