|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Перспективы развития и применения нанотехнологий. углеродные нанотрубки – революция в сфере технологии наночастицПерспективы развития и применения нанотехнологий. углеродные нанотрубки – революция в сфере технологии наночастицПЕРСПЕКТИВЫ РАЗВИТИЯ И ПРИМЕНЕНИЯ НАНОТЕХНОЛОГИЙ. УГЛЕРОДНЫЕ НАНОТРУБКИ – Д.В.Маринин Углеродные каркасные структуры - это большие (а иногда и гигантские!)
молекулы, состоящие исключительно из атомов углерода. Можно даже говорить,
что углеродные каркасные структуры - это новая аллотропная форма углерода. При изучении нанотрубок всплывают весьма интересные и удивительные
качества. Во-первых, разнообразие форм: нанотрубки могут быть большие и
маленькие, однослойные и многослойные, прямые (Рис.2а, б) и спиральные Наконец, поражает разнообразие применений, которые уже придуманы для
нанотрубок. Первое, что напрашивается само собой, это применение нанотрубок
в качестве очень прочных микроскопических стержней и нитей. Как показывают
результаты экспериментов и численного моделирования, модуль Юнга
однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок
больше, чем у стали! Правда, в настоящее время максимальная длина
нанотрубок составляет десятки и сотни микронов - что, конечно, очень велико
по атомным масштабам, но слишком мало для повседневного использования. Необычные электрические свойства нанотрубок сделают их одним из основных материалов наноэлектроники. Разработано уже и несколько применений нанотрубок в компьютерной индустрии. Например, созданы и опробованы прототипы тонких плоских дисплеев, работающих на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя. Получающееся при этом зерно изображения будет фантастически малым: порядка микрона! Пустоты внутри нанотрубок (и углеродных каркасных структур вообще) также привлекают внимание. В самом деле, а что будет, если внутрь фуллерена поместить атом какого-нибудь вещества? Эксперименты показали, что интеркаляция (т.е. внедрение) атомов различных металлов меняет электрические свойства фуллеренов и может даже превратить изолятор в сверхпроводник! Оказывается можно таким же образом изменить свойства нанотрубок. Ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния! На Рис схематично показана структура такой нанотрубки и приведен снимок, полученный исследователями с помощью электронной микроскопии. Электрические свойства такой необычной структуры сильно отличались как от свойств простой, полой нанотрубки, так и от свойств нанотрубки с пустыми фуллеренами внутри. Как, оказывается, много значит валентный электрон, отдаваемый атомом металла во всеобщее распоряжение! Кстати, интересно отметить, что для таких соединений разработаны специальные химические обозначения. Описанная выше структура записывается как Gd@C60@SWNT, что означает "Gd внутри C60 внутри однослойной нанотрубки (Single Wall NanoTube)". В нанотрубки можно не только "загонять" атомы и молекулы поодиночке, но и буквально "вливать" вещество. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами, то есть она как бы втягивает в себя вещество. Таким образом, нанотрубки можно использовать как микроскопические контейнеры для перевозки химически или биологически активных веществ: белков, ядовитых газов, компонентов топлива и даже расплавленных металлов. Попав внутрь нанотрубки, атомы или молекулы уже не могут выйти наружу: концы нанотрубок надежно "запаяны", а углеродное ароматическое кольцо слишком узкое для большинства атомов. В таком виде активные атомы или молекулы можно безопасно транспортировать. Попав в место назначения, нанотрубки раскрываются с одного конца (а операции "запаивания" и "распаивания" концов нанотрубок уже вполне под силу современной технологии) и выпускают свое содержимое в строго определенных дозах. Это - не фантастика, эксперименты такого рода уже сейчас проводятся во многих лабораториях мира. И не исключено, что через 10-20 лет на базе этой технологии будет проводиться лечение заболеваний: скажем, больному вводят в кровь заранее приготовленные нанотрубки с очень активными ферментами, эти нанотрубки собираются в определенном месте организма некими микроскопическими механизмами и "вскрываются" в определенный момент времени. Современная технология уже практически готова к реализации такой схемы. Также из-за высокой удельной поверхности и наличия незаполненных объемов углеродные нанотрубки обладают повышенными сорбционными свойствами. Они способны поглощать (сорбировать) значительное количество как газообразного, так и жидкого вещества. Эта способность весьма привлекательна для создания сверхминиатюрных сенсоров, способных детектировать малейшие примеси в атмосферном воздухе. Принцип их действия основан на изменении электронных характеристик нанотрубок (ширина запрещенной зоны, концентрация и подвижность носителей и т.п.) при сорбции молекул определенного сорта. В общем, к счастью вопрос изучения углеродных каркасных структур
|
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |