|
||||||||||||
|
||||||||||||
|
|||||||||
МЕНЮ
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Химия. АлюминийХимия. АлюминийКурсовая работа по химии Алюминий - самый распостраненный в земной коре металл. На его долю приходится 5,5-6,6 мол. доли % или 8 масс. %. Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав которой отвечает формуле Al2O3.2SiO2.2H2O. Из других природных форм нахождения алюминия наибольшее значение имеют боксит Al2O3.xH2O и минералы корунд Al2O3 и криолит AlF3.3NaF. Впервые алюминий был получен Велером в 1827 году действием металлического калия на хлорид алюминия. Однако, несмотря на широкую распространенность в природе, алюминий до конца XIX века принадлежал к числу редких металлов. В настоящее время в промышленности алюминий получают электролизом
раствора глинозема Al2O3 в расплавленнном криолите. Al2O3 должен быть
достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с
большим трудом. Температура плавления Al2O3 около 2050оС, а криолита - Электролизер для выплавки алюминия представляет собой железный кожух, выложенный изнутри огнеупорным кирпичом. Его дно (под), собранное из блоков спрессованного угля, служит катодом. Аноды располагаются сверху: это - алюминиевые каркасы, заполненные угольными брикетами. Al2O3 = Al3+ + AlO33- На катоде выделяется жидкий алюминий: Al3+ + 3е- = Al Алюминий собирается на дне печи, откуда периодически выпускается. На аноде выделяется кислород: 4AlO33- - 12е- = 2Al2O3 + 3O2 Кислород окисляет графит до оксидов углерода. По мере сгорания углерода анод наращивают. В периодической системе алюминий находится в третьем периоде, в
главной подгруппе третьей группы. Заряд ядра +13. Электронное строение
атома 1s22s22p63s23p1. Металлический атомный радиус 0,143 нм, ковалентный - Наиболее характерная степень окисления атома алюминия +3.Отрицательная степень окисления проявляется редко. Во внешнем электронном слое атома существуют свободные d-подуровни. Благодаря этому его координационное число в соединениях может равняться не только 4 (AlCl4-, AlH4-, алюмосиликаты), но и 6 (Al2O3,[Al(OH2)6]3+). Алюминий - типичный амфотерный элемент. Для него характерны не только анионные, но и катионные комплексы. Так, в кислой среде существует катионный аквакомплекс [Al(OH2)6]3+, а в щелочной - анионный гидрокомплекс и [Al(OH)6]3-. В виде простого вещества алюминий - серебристо-белый, довольно твердый
металл с плотностью 2,7 г/см3 (т.пл. 660оС, т. кип. ~2500оС). На воздухе алюминий покрывается тончайшей (0,00001 мм), но очень плотной пленкой оксида, предохраняющей металл от дальнейшего окисления и придающей ему матовый вид. При обработке поверхности алюминия сильными окислителями (конц. HNO3, K2Cr2O7) или анодным окислением толщина защитной пленки возрастает. Устойчивость алюминмя позволяет изготавливать из него химическую аппаратуру и емкости для хранения и транспортировки азотной кислоты. Алюминий легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминиевая фольга (толщиной 0,005 мм) применяется в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов. Основную массу алюминия используют для получения различных сплавов,
наряду с хорошими механическими качествами характеризующихся своей
легкостью. Важнейшие из них - дуралюминий (94% Al, 4% Cu, по 0,5% Mg, Mn, Алюминий, кроме того, применяется как легирующая добавка ко многим сплавам для придания им жаростойкости. При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соединение происходит уже при обычной температуре, с иодом - при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует. По отношению к воде алюминий вполне устойчив. Но если механическим путем или амальгамированием снять предохраняющее действие оксидной пленки, то происходит энергичная реакция: 2Al + 6H2O = 2Al(OH)3 + 3H2( Сильно разбавленные, а также очень концентрированные HNO3 и H2SO4 на алюминий почти не действуют (на холоду), тогда как при средних концентрациях этих кислот он постепенно растворяется. Чистый алюминий довольно устойчив и по отношению к соляной кислоте, но обычный технический металл в ней растворяется. При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты - соли, содержащие алюминий в составе аниона: Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4] Алюминий, лишенный защитной пленки, взаимодействует с водой, вытесняя из нее водород: 2Al + 6H2O = 2Al(OH)3 + 3H2( Образующийся гидроксид алюминия реагирует с избытком щелочи, образуя гидроксоалюминат: Al(OH)3 + NaOH = Na[Al(OH)4] Суммарное уравнение растворения алюминия в водном растворе щелочи: 2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2( Алюминий заметно растворяется в растворах солей, имеющих вследствие их гидролиза кислую или щелочную реакцию, например, в растворе Na2CO3. В ряду напряжений он располагается между Mg и Zn. Во всех своих устойчивых соединениях алюминий трехвалентен. Соединение алюминия с кислородом сопровождается громадным выделением
тепла (1676 кДж/моль Al2O3), значительно большим, чем у многих других
металлов. В виду этого при накаливании смеси оксида соответствующего
металла с порошком алюминия происходит бурная реакция, ведущая к выделению
из взятого оксида свободного металла. Метод восстановления при помощи Al Алюмотермией иногда пользуются для сварки отдельных стальных частей, в часности стыков трамвайных рельсов. Применяемая смесь (“термит”) состоит обычно из тонких порошков алюминия и Fe3O4. Поджигается она при помощи запала из смеси Al и BaO2. Основная реакция идет по уравнению: 8Al + 3Fe3O4 = 4Al2O3 + 9Fe + 3350 кДж Причем развивается температура около 3000оС. Оксид алюминия представляет собой белую, очень тугоплавкую (т. пл. Обычно загрязненный оксидом железа природный корунд вследствие своей
чрезвычайной твердости применяется для изготовления шлифовальных кругов,
брусков и т.д. В мелко раздробленном виде он под названием наждака служит
для очистки металлических поверхностей и изготовления наждачной бумаги. Для
тех же целей часто пользуются Al2O3, получаемым сплавлением боксита Прозрачные окрашеннные кристаллы корунда - красный рубин - примесь хрома - и синий сапфир - примесь титана и железа - драгоценные камни. Их получают так же искусственно и используют для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п. Кристаллы рубинов, содержащих малую примесь Cr2O3, применяют в качестве квантовых генераторов - лазеров, создающих направленный пучок монохроматического излучения. Ввиду нерастворимости Al2O3 в воде отвечающий этому оксиду гидроксид [Al(OH2)6]3+ + OH- = [Al(OH)(OH2)5]2+ + H2O [Al(OH)(OH2)5]2+ + OH- = [Al(OH)2(OH2)4]+ + H2O [Al(OH)2(OH2)4]+ + OH- = [Al(OH)3(OH2)3]0 + H2O Al(OH)3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер. Однако и основные и особенно кислотные его свойства выражены довольно слабо. В избытке NH4OH гидроксид алюминия нерастворим. Одна из форм дегидратированного гидроксида - алюмогель используется в технике в качестве адсорбента. При взаимодействии с сильными щелочами образуются соответствующие алюминаты: NaOH + Al(OH)3 = Na[Al(OH)4] Алюминаты наиболее активных одновалентных металлов в воде хорошо растворимы, но ввиду сильного гидролиза растворы их устойчивы лишь при наличии достаточного избытка щелочи. Алюминаты, производящиеся от более слабых оснований, гидролизованы в растворе практически нацело и поэтому могут быть получены только сухим путем (сплавлением Al2O3 с оксидами соответствующих металлов). Образуются метаалюминаты, по своему составу производящиеся от метаалюминиевой кислоты HAlO2. Большинство из них в воде нерастворимо. С кислотами Al(OH)3 образует соли. Производные большинства сильных кислот хорошо растворимы в воде, но довольно значительно гидролизованы, и поэтому растворы их показывают кислую реакцию. Еще сильнее гидролизованы растворимые соли алюминия и слабых кислот. Вследствие гидролиза сульфид, карбонат, цианид и некоторые другие соли алюминия из водных растворов получить не удается. В водной среде анион Al3+ непосредственно окружен шестью молекулами воды. Такой гидратированный ион несколько диссоциирован по схеме: [Al(OH2)6]3+ + H2O = [Al(OH)(OH2)5]2+ + OH3+ Константа его диссоциации равна 1.10-5,т.е. он является слабой кислотой (близкой по силе к уксусной). Октаэдрическое окружение Al3+ шестью молекулами воды сохраняется и в кристаллогидратах ряда солей алюминия. Алюмосиликаты можно рассматривать как силикаты, в которых часть
кремниекислородных тетраэдров SiO44- заменена на алюмокислородные тетраэдры ортоклаз K2Al2Si6O16 или K2O.Al2O3.6SiO2 альбит Na2Al2Si6O16 или Na2O.Al2O3.6SiO2 анортит CaAl2Si2O8 или CaO.Al2O3.2SiO2 Очень распространены минералы группы слюд, например мусковит (Na,K)2[Al2Si2O8] + 2CaCO3 = 2CaSiO3 + NaAlO2 + KAlO2 + 2CO2( б) образовавшуюся массу выщелачивают водой - образуется раствор алюминатов натрия и калия и шлам CaSiO3: NaAlO2 + KAlO2 + 4H2O = Na[Al(OH)4] + K[Al(OH)4] в) через раствор алюминатов пропускают образовавшийся при спекании CO2: Na[Al(OH)4] + K[Al(OH)4] + 2CO2 = NaHCO3 + KHCO3 + 2Al(OH)3 г) нагреванием Al(OH)3 получают глинозем: 2Al(OH)3 = Al2O3 + 3H2O д) выпариванием маточного раствора выделяют соду и потаж, а ранее полученный шлам идет на производство цемента. При производстве 1 т Al2O3 получают 1 т содопродуктов и 7.5 т цемента. Некоторые алюмосиликаты обладают рыхлой структурой и способны к ионному обмену. Такие силикаты - природные и особенно искусственные - применяются для водоумягчения. Кроме того, благодаря своей сильно развитой поверхности, они используются в качестве носителей катализаторов, т.е. как материалы, пропитываемые катализатором. Галогениды алюминия в обычных условиях - бесцветные кристаллические вещества. В ряду галогенидов алюминия AlF3 сильно отличается по свойствам от своих аналогов. Он тугоплавок, мало растворяется в воде, химически неактивен. Основной способ получения AlF3 основан на действии безводного HF на Al2O3 или Al: Al2O3 + 6HF = 2AlF3 + 3H2O Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма
реакционноспособны и хорошо растворимы не только в воде, но и во многих
органических растворителях. Взаимодействие галогенидов алюминия с водой
сопровождается значительным выделением теплоты. В водном растворе все они
сильно гидролизованы, но в отличие от типичных кислотных галогенидов
неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже
при обычных условиях, AlCl3, AlBr3 и AlI3 дымят во влажном воздухе Плотности паров AlCl3, AlBr3 и AlI3 при сравнительно невысоких
температурах более или менее точно соответствуют удвоенным формулам - С галогенидными солями ряда одновалентных металлов галогениды алюминия
образуют комплексные соединения, главным образом типов M3[AlF6] и M[AlHal4] Из фторалюминатов наибольшее применение (для получения Al, F2, эмалей, стекла и пр.) имеет криолит Na3[AlF6]. Промышленное производство искусственного криолита основано на обработке гидроксида алюминия плавиковой кислотой и содой: 2Al(OH)3 + 12HF + 3Na2CO3 = 2Na3[AlF6] + 3CO2 + 9H2O Хлоро-, бромо- и иодоалюминаты получаются при сплавлении тригалогенидов алюминия с галогенидами соответствующих металлов. Хотя с водородом алюминий химически не взаимодействует, гидрид алюминия можно получить косвенным путем. Он представляет собой белую аморфную массу состава (AlH3)n. Разлагается при нагревании выше 105оС с выделением водорода. При взаимодействии AlH3 с основными гидридами в эфирном растворе образуются гидроалюминаты: LiH + AlH3 = Li[AlH4] Гидридоалюминаты - белые твердые вещества. Бурно разлагаются водой. Сульфат алюминия Al2(SO4)3.18H2O получается при действии горячей серной кислоты на оксид алюминия или на каолин. Применяется для очистки воды, а также при приготовлении некоторых сортов бумаги. Алюмокалиевые квасцы KAl(SO4)2.12H2O применяются в больших количествах для дубления кож, а также в красильном деле в качестве протравы для хлопчатобумажных тканей. В последнем случае действие квасцов основано на том, что образующиеся вследствие их гидролиза гидроксид алюминия отлагается в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель, прочно удерживает его на волокне. Из остальных производных алюминия следует упомянуть его ацетат (иначе Несмотря на наличие громадных количеств алюминия в почках, растениях, как правило, содержат мало этого элемента. Еще значительно меньше его содержание в животных организмах. У человека оно составляет лишь десятитысячные доли процента по массе. Биологическая роль алюминия не выяснена. Токсичностью соединения его не обладают. Реакции, проведенные на практикуме Термодинамический расчет 2Al + 6H2O = 2Al(OH)3 + 3H2( 1. В.А.Рабинович, З.Я.Хавин “Краткий химический справочник”
|
РЕКЛАМА
|
|||||||||||||||||
|
БОЛЬШАЯ ЛЕНИНГРАДСКАЯ БИБЛИОТЕКА | ||
© 2010 |